In this paper, similarity rcductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m, n) equations) utt = (un)xx + (um) which is a generalized model of Boussinesq equation uts = (u2)xx + u an...In this paper, similarity rcductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m, n) equations) utt = (un)xx + (um) which is a generalized model of Boussinesq equation uts = (u2)xx + u and modified Bousinesq equation utt = (u3)xx + uxxxx, are considered by using the direct reduction method. As a result,several new types of similarity reductions are found. Based on the reduction equations and some simple transformations,we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1, n) equations and B(m, m)equations, respectively.展开更多
By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equ...By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.展开更多
In this letter, we investigate traveling wave solutions of a nonlinear wave equation with degenerate dispersion. The phase portraits of corresponding traveling wave system are given under different parametric conditio...In this letter, we investigate traveling wave solutions of a nonlinear wave equation with degenerate dispersion. The phase portraits of corresponding traveling wave system are given under different parametric conditions. Some periodic wave and smooth solitary wave solutions of the equation are obtained. Moreover, we find some new hyperbolic function compactons instead of well-known trigonometric function compactons by analyzing nilpotent points.展开更多
We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as ...We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.展开更多
In this paper exact solutions of a new modified nonlinearly dispersive equation (simply called inK(m, n, a, b) Ua Ub equation), u^m-1 ut + α( u^n)x +β(u^a(u^b)xx)x = 0, is investigated by using some dir...In this paper exact solutions of a new modified nonlinearly dispersive equation (simply called inK(m, n, a, b) Ua Ub equation), u^m-1 ut + α( u^n)x +β(u^a(u^b)xx)x = 0, is investigated by using some direct algorithms. As a result, abundant new compacton solutions (solitons with the absence of infinite wings) and solitary pattern solutions (having infinite slopes or cusps) are obtained.展开更多
Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary ...Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.展开更多
In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic fun...In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic function, solitary wave and periodic wave solutions, of this equation are obtained with minimal calculations. The properties of the R(m, n) equations are shown in figures.展开更多
This paper shows that a Camassa-Hohn type equation can be reduced to Hamiltonian system by transformation of variables.The hamiltonian system is studied by making use of the dynamical systems theory and the qualitativ...This paper shows that a Camassa-Hohn type equation can be reduced to Hamiltonian system by transformation of variables.The hamiltonian system is studied by making use of the dynamical systems theory and the qualitative behavior of degenerate singular points is presented.In particular,new type of compacton-like solutions is obtained by setting the partial differential equation under boundary condition limξ→±∞Ψ(ξ) = A.展开更多
In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized...In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.展开更多
文摘In this paper, similarity rcductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m, n) equations) utt = (un)xx + (um) which is a generalized model of Boussinesq equation uts = (u2)xx + u and modified Bousinesq equation utt = (u3)xx + uxxxx, are considered by using the direct reduction method. As a result,several new types of similarity reductions are found. Based on the reduction equations and some simple transformations,we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1, n) equations and B(m, m)equations, respectively.
文摘By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11161013,11361017,and 11301106Foundation of Guangxi Key Lab of Trusted Software and Program for Innovative Research Team of Guilin University of Electronic TechnologyProject of Outstanding Young Teachers’Training in Higher Education Institutions of Guangxi
文摘In this letter, we investigate traveling wave solutions of a nonlinear wave equation with degenerate dispersion. The phase portraits of corresponding traveling wave system are given under different parametric conditions. Some periodic wave and smooth solitary wave solutions of the equation are obtained. Moreover, we find some new hyperbolic function compactons instead of well-known trigonometric function compactons by analyzing nilpotent points.
文摘We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.
基金Sponsored by K.C.Wong Magna Fund in Ningbo University and Ningbo Natural Science Foundation under Grant Nos.2008A610017 and 2007A610049
文摘In this paper exact solutions of a new modified nonlinearly dispersive equation (simply called inK(m, n, a, b) Ua Ub equation), u^m-1 ut + α( u^n)x +β(u^a(u^b)xx)x = 0, is investigated by using some direct algorithms. As a result, abundant new compacton solutions (solitons with the absence of infinite wings) and solitary pattern solutions (having infinite slopes or cusps) are obtained.
文摘Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.
文摘In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic function, solitary wave and periodic wave solutions, of this equation are obtained with minimal calculations. The properties of the R(m, n) equations are shown in figures.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11401274,11271171Science and technology landing project of colleges and universities in Jiangxi Province under Grant Nos.KJLD14092,KJLD13093
文摘This paper shows that a Camassa-Hohn type equation can be reduced to Hamiltonian system by transformation of variables.The hamiltonian system is studied by making use of the dynamical systems theory and the qualitative behavior of degenerate singular points is presented.In particular,new type of compacton-like solutions is obtained by setting the partial differential equation under boundary condition limξ→±∞Ψ(ξ) = A.
文摘In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.