期刊文献+
共找到69,314篇文章
< 1 2 250 >
每页显示 20 50 100
Temperature Control Performance and Cooling Release Characteristics of PCM in Large Space:Case Study of Cold Storage 被引量:1
1
作者 Zhengrong Shi Hai Hong +1 位作者 Yanming Shen Jingyong Cai 《Energy Engineering》 2025年第3期885-903,共19页
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi... Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction. 展开更多
关键词 cold storage cold energy storage system PCM plates cooling release characteristics
在线阅读 下载PDF
Plants Pass Down“Learned”Cold Tolerance through Molecular Memory
2
作者 YAN Fusheng 《Bulletin of the Chinese Academy of Sciences》 2025年第2期107-110,共4页
A recent discovery in rice has revealed an elegant trick of nature:crops can teach their later generations to survive the cold through inherited memories written in chemical marks on the DNA letters,representing the f... A recent discovery in rice has revealed an elegant trick of nature:crops can teach their later generations to survive the cold through inherited memories written in chemical marks on the DNA letters,representing the first clear demonstration of what scientists call the“inheritance of acquired characteristics”-a phenomenon that biologists have debated for over two centuries. 展开更多
关键词 survive cold rice cold tolerance molecular memory inheritance acquired characteristics
在线阅读 下载PDF
Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers:A low dosage and high-efficiency cold flow improver for diesel fuel
3
作者 Bowen Xu Jiahao Chen +3 位作者 Lulu Cui Xinyue Li Yuan Xue Sheng Han 《Chinese Chemical Letters》 2025年第5期606-609,共4页
The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-do... The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-dosage and high-efficiency CFIs for diesel,1,2,3,6-tetrahydrophthalic anhydride(THPA)was introduced as a third and polar monomer to enhance the depressive effects of alkyl methacrylatetrans anethole copolymers(C_(14)MC-TA).The terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-TA-THPA)were synthesized and compared with the binary copolymers of C_(14)MC-TA and alkyl methacrylate-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-THPA).Results showed that C_(14)MC-THPA achieved the best depressive effects on the cold filter plugging point(CFPP)and solid point(SP)by 11℃and 16℃at a dosage of 1250 mg/L and monomer ratio of 6:1,while 1500mg/L C_(14)MC-TA(1:1)reached the optimal depressive effects on the CFPP and SP by 12℃and 18℃.THPA introduction significantly improved the depressive effects of C_(14)MC-TA.Lower dosages of C_(14)MCTA-THPA in diesel exerted better improvement effects on the CFPP and SP than that of C_(14)MC-TA and C_(14)MC-THPA.When the monomer ratio and dosage were 6:0.6:0.4 and 1000 mg/L,the improvement effect of C_(14)MC-TA-THPA on diesel reached the optimum level,and the CFPP and SP were reduced by 13℃and 19℃,respectively.A 3D nonlinear surface diagram fitted by a mathematical model was also used for the first time to better understand the relationships of monomer ratios,dosages,and depressive effects of CFIs in diesel.Surface analysis results showed that C_(14)MC-TA-THPA achieved the optimum depressive effects at a monomer ratio of 6:0.66:0.34 and dosage of 1000 mg/L,and the CFPP and SP decreased by 14℃ and 19℃,respectively.The predicted results were consistent with the actual ones.Additionally,the improvement mechanism of these copolymers in diesel was also explored. 展开更多
关键词 Diesel fuel High-efficiency cold flow properties cold flow improvers Mathematical model
原文传递
Analysis of Causes of a Widespread Strong Cold Wave Process
4
作者 Xuefeng YANG Sitong LIU 《Meteorological and Environmental Research》 2025年第1期18-20,共3页
Based on the high-altitude and ground observation data,as well as physical quantity field data,a cold wave weather process in Northeast China,North China and Inner Mongolia during January 1-6,2010 was comprehensively ... Based on the high-altitude and ground observation data,as well as physical quantity field data,a cold wave weather process in Northeast China,North China and Inner Mongolia during January 1-6,2010 was comprehensively analyzed from the aspects of circulation background,circulation situation,influence system,dynamic conditions,water vapor conditions,etc.The results show that the cold wave weather process appeared during the transition of circulation pattern from zonal to meridional type in middle and high latitudes in the northern Hemisphere.Due to the development of the European trough,the strong warm advection was transported to the Ural Ridge,making it strongly developed.The strong northerly wind belt in front of the ridge moved southwards.The warm advection at the rear of the transverse trough and the cold advection in the southeast in front of the transverse trough on the northwest side of Lake Baikal caused the transverse trough to turn upright and moved southwards,and the longitude of the circulation increased continuously to guide cold air to move southwards,resulting in this strong cold air process.The large ground pressure gradient caused by strong cold air and the frontogenesis of strong surface cyclone led to the gale in North China. 展开更多
关键词 cold wave Influence system Circulation pattern Physical quantity field cold advection
在线阅读 下载PDF
Effect of cold rolling on aging precipitation and mechanical properties of magnesium-aluminum alloy 被引量:1
5
作者 Feiya Liu Renlong Xin +1 位作者 Yiru Zhong Qing Liu 《Journal of Magnesium and Alloys》 2025年第6期2606-2617,共12页
Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this ... Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this work,the aging-hardening response of AZ80 alloy was effectively enhanced by applying cold-rolling deformation before conducting conventional aging treatment at 200°C.Compared to the directly aged sample,the yield strength of the pre-rolling and aged sample was increased by 35 MPa.Electron microscope examination confirmed that profuse{10¯11}and{10¯11}-{10¯12}twins,consisting of high density of dislocations and stacking faults,were generated by cold rolling.Blocky or ellipsoidal Mg_(17)Al_(12)precipitates formed at the twin boundaries(TBs)during subsequent aging treatment.Crystallographic analysis indicated that the precipitates at{10¯11}TBs always held an identical Potter OR with both the matrix and twin,while the precipitates at{10¯11}-{10¯12}TBs exhibited three different ORs:Burgers OR,Potter OR and P-S OR with either the matrix or the twin.Moreover,recrystallized grains were found inside{10¯11}-{10¯12}double twins after peak-aging at 200°C,implying that precipitation and recrystallization might occur concurrently along TBs at a relatively low temperature.It was speculated that the highly stored energy inside twins and the high elastic energy between the precipitates and twins were driving factors for the occurrence of recrystallization. 展开更多
关键词 Magnesium alloy cold rolling Aging precipitation Twin boundary Orientation relationship
在线阅读 下载PDF
High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu 被引量:1
6
作者 Wenya Li Jingwen Yang +2 位作者 Zhengmao Zhang Yingchun Xie Chunjie Huang 《Journal of Materials Science & Technology》 2025年第11期11-15,共5页
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-... 1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts. 展开更多
关键词 additive manufacturing DUCTILITY cold spray MERGING solid state deposition twin assisted grain rotation
原文传递
Processing,microstructure,and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process 被引量:1
7
作者 Bai-hao CAI Ji-kang FAN +3 位作者 Jie LI Dong-qing YANG Yong PENG Ke-hong WANG 《Transactions of Nonferrous Metals Society of China》 2025年第1期91-104,共14页
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties... Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6. 展开更多
关键词 AZ91 magnesium alloy droplet transfer MICROSTRUCTURE mechanical properties cold arc process
在线阅读 下载PDF
Exceptional strength paired with increased cold cracking susceptibility in laser powder bed fusion of a Mg-RE alloy 被引量:1
8
作者 Qingchen Deng Fan Chen +7 位作者 Lu Wang Ziyi Liu Qianye Wu Zhiyu Chang Yujuan Wu Wentao Yan Liming Peng Wenjiang Ding 《Journal of Materials Science & Technology》 2025年第10期300-314,共15页
Additive manufacturing (AM) of high-strength metallic alloys frequently encounters detrimental distortion and cracking, attributed to the accumulation of thermal stresses. These issues significantly impede the practic... Additive manufacturing (AM) of high-strength metallic alloys frequently encounters detrimental distortion and cracking, attributed to the accumulation of thermal stresses. These issues significantly impede the practical application of as-printed components. This study examines the Mg-15Gd-1Zn-0.4Zr (GZ151K, wt.%) alloy, a prototypical high-strength casting Mg-RE alloy, fabricated through laser powder bed fusion (LPBF). Despite achieving ultra-high strength, the GZ151K alloy concurrently exhibits a pronounced cold-cracking susceptibility. The as-printed GZ151K alloy consists of almost fully fine equiaxed grains with an average grain size of merely 2.87 µm. Subsequent direct aging (T5) heat treatment induces the formation of dense prismatic β' precipitates. Consequently, the LPBF-T5 GZ151K alloy manifests an ultra-high yield strength of 405 MPa, surpassing all previously reported yield strengths for Mg alloys fabricated via LPBF and even exceeding that of its extrusion-T5 counterpart. Interestingly, as-printed GZ151K samples with a build height of 2 mm exhibit no cracking, whereas samples with build heights ranging from 4 to 18 mm demonstrate severe cold cracking. Thermal stress simulation also suggests that the cold cracking susceptibility increases significantly with increasing build height. The combination of high thermal stress and low ductility in the as-printed GZ151K alloy culminates in a high cold cracking susceptibility. This study offers novel insights into the intricate issue of cold cracking in the LPBF process of high-strength Mg alloys, highlighting the critical balance between achieving high strength and mitigating cold cracking susceptibility. 展开更多
关键词 Laser powder bed fusion Mg-RE alloy cold cracking High strength Build height Thermal stress simulation
原文传递
Ca^(2+)-induced CpCBL8-CpCIPK9 module negatively regulates dormancy breaking and cold tolerance in winter-flowering wintersweet 被引量:1
9
作者 Mingkang Tian Qiang Li +4 位作者 Ning Liu Juncai Li Juntao Huo Shunzhao Sui Zhineng Li 《Horticultural Plant Journal》 2025年第2期877-890,共14页
The complex of calcineurin B-like protein(CBL)and CBL-interacting protein kinase(CIPK)serves as key components in calcium-sensing,orchestrating various signals crucial for plant growth,development,and responses to bio... The complex of calcineurin B-like protein(CBL)and CBL-interacting protein kinase(CIPK)serves as key components in calcium-sensing,orchestrating various signals crucial for plant growth,development,and responses to biotic and abiotic stresses.However,the mechanism underlying the response of this module to cold stress and its role in flower development in wintersweet(Chimonanthus praecox)remains unclear.Through expression pattern analysis,calcium ion(Ca^(2+))concentration assays,correlation analysis,and linear regression analysis,we found that the[Ca^(2+)],along with CpCBL8 and CpCIPK9 expression levels in wintersweet flower buds(FBs),significantly decreased during the initial flowering stage when the chilling requirement reached 570 chill units(CU).Notably,there was a significant positive correlation between[Ca^(2+)]and CpCBL8 expression.Ca^(2+)increased the expression of Cp CBL8 and CpCIPK9 in FBs,causing a significant delay in the flowering of wintersweet.Furthermore,the function of CpCBL8 was studied using heterologous transformation.Overexpression of CpCBL8 significantly delayed flowering time and significantly reduced cold tolerance and altered the expression pattern of endogenous genes related to low-temperature stress and flower development in transgenic Arabidopsis thaliana.Additionally,transcriptome analysis of chilling-induced dormancy breaking and flower bud enlargement revealed that CpCBL8 and CpCIPK9 were negatively regulated by cold,and the expression pattern of endogenous genes related to flower development and cold stress in wintersweet were similar to that of in A.thaliana.Moreover,protein-protein interaction(PPI)analysis revealed that CpCBL8 and CpCIPK9 interacted in the plasma membrane and nucleus.On the basis of these findings,we speculated that the CpCBL8-CpCIPK9 module plays a crucial role in regulating responses to cold stress and flower development in wintersweet.This study elucidated molecular mechanisms through which the downregulation of the Ca^(2+)-induced CpCBL8-CpCIPK9 module results in dormancy breaking and enhances cold tolerance.This study provides valuable insights for the cultivation of new varieties of wintersweet with increased ornamental value and enhanced cold stress tolerance. 展开更多
关键词 Chimonanthus praecox CA^(2+) Calcineurin B-like protein(CBL) CBL-interacting protein kinase(CIPK) Flower development cold stress response
在线阅读 下载PDF
Statistical analysis on the validity of the cold plasma approximation for chorus waves based on Van Allen Probe observations and their effects on radiation belt electrons
10
作者 AoJun Ren Jiang Yu +2 位作者 Jing Wang ZuZheng Chen XiaoMan Liu 《Earth and Planetary Physics》 EI CAS 2025年第1期159-170,共12页
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ... Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density. 展开更多
关键词 chorus waves cold plasma approximation dispersion relations scattering rates
在线阅读 下载PDF
Multi-scale analysis of microstructural evolution and atomic bonding mechanisms in CoCrFeMnNi high-entropy alloys upon cold spray impact 被引量:1
11
作者 R.Nikbakht M.Saadati +2 位作者 H.S.Kim M.Jahazi R.R.Chromik 《Journal of Materials Science & Technology》 2025年第5期263-277,共15页
Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic pla... Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic plasticity,which is claimed to promote bonding even without ASI.A thorough microstructural analysis is vital to fully understand the bonding mechanisms at play during microparticle impacts and throughout the CS process.In this study,the HEA CoCrFeMnNi,known for its relatively high strain hardening and resistance to softening,was selected to investigate the microstructure characteristics and bonding mech-anisms in CS.This study used characterization techniques covering a range of length scales,including electron channeling contrast imaging(ECCI),electron backscatter diffraction(EBSD),and high-resolution transmission microscopy(HR-TEM),to explore the microstructure characteristics of bonding and overall structure development of CoCrFeMnNi microparticles after impact in CS.HR-TEM lamellae were prepared using focused ion beam milling.Additionally,the effects of deformation field variables on microstructure development were determined through finite element modeling(FEM)of microparticle impacts.The ECCI,EBSD,and HR-TEM analyses revealed an interplay between dislocation-driven processes and twinning,leading to the development of four distinct deformation microstructures.Significant grain refinement occurs at the interface through continuous dynamic recrystallization(CDRX)due to high strain and temperature rise from adiabatic deformation,signs of softening,and ASI.Near the interface,a necklace-like structure of refined grains forms around grain boundaries,along with elongated grains,resulting from the coexistence of dynamic recovery and discontinuous dynamic recrystallization(DDRX)due to lower temperature rise and strain.Towards the particle or substrate interior,concurrent twinning and dislocation-mediated mechanisms refine the structure,forming straight,curved,and intersected twins.At the top of the particles,only deformed grains with a low dislocation density are observed.Our results showed that DRX induces microstructure softening in highly strained interface areas,facilitating atomic bonding in CoCrFeMnNi.HR-TEM investigation confirms the formation of atomic bonds between particles and substrate,with a gradual change in crystal lattice orientation from the particle to the substrate and the occurrence of some misfit dislocations and vacancies at the interface.Finally,the findings of this research suggest that softening and ASI,even in materials resistant to softening,are required to establish bonding in CS. 展开更多
关键词 Multi-length scale microstructure characteristics of bonding in cold spray DRX-induced softening and its role in bonding Interplay between twinning-induced hardening and DRX-driven softening EBSD&HR-TEM CoCrFeMnNi high entropy alloys
原文传递
Participation of H_2O_2 in Enhancement of Cold Chilling by Salicylic Acid in Banana Seedlings 被引量:27
12
作者 康国章 王正询 孙谷畴 《Acta Botanica Sinica》 CSCD 2003年第5期567-573,共7页
The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of re... The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed. 展开更多
关键词 salicylic acid banana ( Musa acuminata cv. Williams 8188) cold stress antioxidant enzyme activities cold tolerance H 2O 2 metabolism
在线阅读 下载PDF
Dynamics of Essential Metal Elements Contents in Winter Oilseed Rape during Cold Acclimation 被引量:4
13
作者 张树杰 王琼 +1 位作者 李光明 张春雷 《Agricultural Science & Technology》 CAS 2011年第8期1156-1160,1165,共6页
[Objective]The paper was to investigate the dynamics of essential metal elements(Ca,Mg,Fe,Mn,Zn and Cu)contents in winter oilseed rape(Brassica napus L.)during cold acclimation,and to reveal the effects and mechan... [Objective]The paper was to investigate the dynamics of essential metal elements(Ca,Mg,Fe,Mn,Zn and Cu)contents in winter oilseed rape(Brassica napus L.)during cold acclimation,and to reveal the effects and mechanisms of essential elements in cold resistance of oilseed rape.[Method]Three varieties with different cold resistance including Zhongshuang No.11(ZS,freezing sensitive variety),Ganyouza No.1(GY)and Jinyuyou No.1(JYY,freezing tolerant varieties)were used in the study,and the changes of necessary metal elements in these oilseed rapes during cold acclimation were studied.[Result]The concentration of metal elements in oilseed rape had significant changes during cold acclimation,and the difference between varieties was significant.In plant roots,the concentrations of Ca,Mg,Fe,Mn,Zn and Cu were significantly increased,this might because that low temperature made the transpiration decreased,thus blocking the upward transport of elements.In plant shoots,the concentrations of Ca,Mg and Zn were significantly decreased,while the concentrations of Fe and Mn were significantly increased;the change extent of various elements in ZS variety was the largest.[Conclusion]Maintaining the stability of Ca,Mg and Zn concentrations and increasing Fe,Mn and Cu concentrations in plant shoots might be benefit for increasing the cold tolerance of winter oilseed rape. 展开更多
关键词 cold acclimation cold resistance Essential elements Winter oilseed rape
在线阅读 下载PDF
Effect of thermal annealing on cold crystallization ability of thermoset polyurethane elastomer synthesized from fully bio-derived polyol
14
作者 Jaeheon Lee Jung Hyeun Kim 《Chinese Journal of Structural Chemistry》 2025年第5期28-35,共8页
Bio-polyol is considered as a core material to synthesize eco-friendly polyurethane products.However,one of the popular bio-polyols,polytrimethylene ether glycol(PO3G),is reluctant to crystallize and therefore exhibit... Bio-polyol is considered as a core material to synthesize eco-friendly polyurethane products.However,one of the popular bio-polyols,polytrimethylene ether glycol(PO3G),is reluctant to crystallize and therefore exhibits a cold crystallization behavior.This abnormal behavior causes unstable mechanical properties at low-temperature and limits its applications in shape memory devices where crystallization is an essential mechanism.To analyze the unusual phenomenon,we compared different ether polyols focusing on symmetry characteristics and the evenodd effect of carbon backbones.It is found that PO3G has a slow crystallization rate because its ether linkages require specific chain arrangement for attractive interactions.Consequently,a thermal learning mechanism is developed to restore the normal crystallization behavior of elastomers synthesized from the bio-polyol.Repetitive heating and cooling cycles with high-temperature annealing induce urethane exchange reaction and reconstruct the chain orientations for fast crystallization.Results suggest the degree of crystallizations in polyurethane elastomer can be precisely controlled by introducing repetitive thermal treatments to enhance the potential applications of bio-polyols in polymer industries. 展开更多
关键词 Bio-polyol cold crystallization Post treatment POLYURETHANE ELASTOMER
原文传递
Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells
15
作者 He Jiao Songqian Huang +13 位作者 Minghao Zhang Qiao Huang Chenyu Yan Jingting Qi Jiangbo Cheng Yuan Xu Xue Zhai Xinwen Li Siyao Zhan Wei Li Zhichao Wu Jiulin Chan Liangbiao Chen Peng Hu 《Journal of Genetics and Genomics》 2025年第8期1046-1057,共12页
Temperature fluctuations challenge ectothermic species,particularly tropical fish dependent on external temperatures for physiological regulation.However,the molecular mechanisms through which low-temperature stress i... Temperature fluctuations challenge ectothermic species,particularly tropical fish dependent on external temperatures for physiological regulation.However,the molecular mechanisms through which low-temperature stress impacts immune responses in these species,especially in relation to chromatin accessibility and epigenetic regulation,remain poorly understood.In this study,we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia(Oreochromis niloticus),a tropical fish of significant economic importance,under cold stress.By analyzing cis-regulatory elements in open chromatin regions and their associated transcription factors(TFs),we construct a comprehensive transcriptional regulatory network(TRN)governing immune responses,including DNA damage-induced apoptosis.Our analysis identifies 119 TFs within the TRN,with Stat1 emerging as a central hub exhibiting distinct binding dynamics under cold stress,as revealed by footprint analysis.Overexpression of Stat1 in immune cells leads to apoptosis and increases the expression of apoptosis-related genes,many of which contain Stat1-binding sites in their regulatory regions,emphasizing its critical role in immune cell survival during cold stress.These results provide insights into the transcriptional and epigenetic regulation of immune responses to cold stress in tilapia and highlight Stat1 as a promising target for enhancing cold tolerance in tropical fish species. 展开更多
关键词 cold stress TRN Chromatin accessibility STAT1 TILAPIA Immunecells
原文传递
Identification of potential metabolites responsible for cold tolerance in buds of Vitis amurensis
16
作者 Qingyun Li Huimin Zhou +8 位作者 Fengmei Chai Zemin Wang Linchuan Fang Wei Duan Peige Fan Zhenchang Liang Shaohua Li Qingfeng Wang Haiping Xin 《Horticultural Plant Journal》 2025年第1期175-188,共14页
Cold tolerance is one of the important traits for grapevine,especially in regions with extremely low temperatures in winter.Vitis amurensis is wild species in the Vitis genus with excellent cold hardiness compared wit... Cold tolerance is one of the important traits for grapevine,especially in regions with extremely low temperatures in winter.Vitis amurensis is wild species in the Vitis genus with excellent cold hardiness compared with Vitis vinifera.However,metabolites that contribute to the cold tolerance of V.amurensis remain unknown.Here,the metabolomics of buds from V.amurensis‘Zuoshan-1'during cold acclimation(CA)were identified,and cold-sensitive cultivar(V.vinifera‘Jingzaojing')was used as the control.The buds were collected in October,November,and December in 2016 and 2018.The cold hardiness of the buds increased during CA in the two grapevines.However,browning was observed only in V.vinifera buds at temperature below-10℃.Among detected metabolites from buds,443 metabolites were overlapped between two years.Forty-four and thirty differentially accumulated metabolites(DAMs)were identified in V.amurensis and V.vinifera,respectively.Ten DAMs including monoacylglycerol(MAG,18:2)isomer 1,trehalose 6-phosphate,and D-glucose showed identical variations in the two grapevines,indicating conserved CA responses within the Vitis genus.Eighteen DAMs exhibited higher accumulation in V.amurensis than in V.vinifera.Maltotetraose,D-glucoronic acid,L-aspartic acid,azelaic acid,and 4-hydroxybenzoic acid were reported to accumulate during CA in other plants.Enhanced cold tolerance was detected in grapevine leaves with exogenous 5 mmol L^(-1)L-aspartic acid and 1%proanthocyanidins.Potential contributions of other DAMs found in V.amurensis such as Cyanidin 3-O-glucoside need to be further elucidated.Thus,eighteen metabolites accumulated in V.amurensis can be used for practical application in improvement of cold resistance in grapevine.Our findings provide new insights into understanding the cold hardiness of V.amurensis. 展开更多
关键词 GRAPEVINE Metabolomics BUD Low temperature cold hardiness
在线阅读 下载PDF
Biochar immobilization of cold-resistant bacteria enhances ammonium nitrogen removal from domestic wastewater
17
作者 MIAO Yuanying WANG Jijie +3 位作者 XIE Xiuhong HE Debo YANG Jingyu DONG Zhixin 《Journal of Mountain Science》 2025年第11期4024-4036,共13页
Bioremediation is an efficient and popular approach for domestic wastewater treatment while the pollutant discharge standards are difficult to achieve under low-temperature conditions. The application of cold-resistan... Bioremediation is an efficient and popular approach for domestic wastewater treatment while the pollutant discharge standards are difficult to achieve under low-temperature conditions. The application of cold-resistant bacteria has gained increasing attention, but direct introduction to sewage leads to poor environmental adaptability and low microbial activity. Biochar was used as a carrier to immobilize the bacteria to improve microbial survival and activity in this study. The basic physicochemical properties of bacteria immobilized by biochar and ammonium nitrogen removal efficiency were analyzed. The process mechanism of ammonium nitrogen removal was further explored using kinetic fitting and molecular simulation calculations. The results showed that biochar immobilization of cold-resistant bacteria achieved a significantly higher ammonium nitrogen removal rate of 0.88 mg/(L·h) compared to free mixed bacteria(0.74 mg/(L·h)) and biochar alone(0.22 mg/(L·h)). It also exhibited a removal efficiency of 96.56%, which was 15.02% and 72.58% higher than that of free mixed bacteria and biochar, respectively. Adsorption kinetics further revealed that the pseudosecond-order kinetic equation was a better fit for characterizing ammonia-nitrogen removal by biocharimmobilized cold-resistant bacteria. Combining microscopic morphology analysis and molecular simulations demonstrated that enriching functional groups on biochar enhanced its NH_(4)^(+) adsorption capacity by increasing surface activity and polarity, as well as the biodegradation ability of NH_(4)^(+) by improving the interactions between biochar and active enzymes. These findings provide valuable insights into developing more effective ways to improve wastewater treatment efficiency under low temperatures. 展开更多
关键词 Bioremediation Wastewater treatment BIOCHAR cold resistant bacteria Bioadsorption DENITRIFICATION
原文传递
Over-expression of the Iris laevigata cold-resistance gene MYB97 improves photosynthetic capacity and photoprotection in tobacco(Nicotiana tabacum)
18
作者 Yu Shu Ruiyang Zhao +4 位作者 Nuo Xu Yingxuan Dai Jyoti R.Bhera Aruna Kilaru Ling Wang 《Journal of Forestry Research》 2025年第1期461-474,共14页
In northern China,light and temperature are major limiting factors for plant growth,particularly during seed production and seedling establishment.While previous studies suggested a possible role for the MYB97 gene in... In northern China,light and temperature are major limiting factors for plant growth,particularly during seed production and seedling establishment.While previous studies suggested a possible role for the MYB97 gene in cold-stress,confirmation through documented evidence was lacking.In this study,we transformed the MYB97 gene from Iris laevigata into tobacco,and discovered that the gene boosted photosynthesis,photoprotection and resilience to cold.The transgenic tobacco seeds exhibited enhanced germination and accelerated seedling growth.Moreover,these plants had decreased levels of MDA(Malondialdehyde)and relative conductance,coupled with elevated concentrations of proline and soluble sugars.This response was accompanied by heightened activity of antioxidant enzymes during periods of cold stress(4 and−2℃).Exposure to low temperatures(0–15℃)also reduced heights but accentuated primary root growth in transgenic tobacco plants.Additionally,tobacco leaves showed an increased growth along with higher chlorophyll levels,net photosynthetic rates,stomatal conductance,transpiration rates and non-photochemical quenching coefficient.This study shows that IlMYB97(The MYB97 genes in I.laevigata)improves cold-resistance,and enhances photosynthesis and photoprotective ability,and thus overall growth and development.These findings would offer the genetic resources to further study cold resistance and photosynthesis. 展开更多
关键词 Iris laevigata MYB97 Photosynthesis PHOTOPROTECTION cold stress
在线阅读 下载PDF
Comprehensive analysis of cold exposure-associated transcriptional and metabolic changes in the liver
19
作者 Yuzhu Di Zhengchao Wen +8 位作者 Xiaomin Liu Kejiao Zhang Xiuyun Shen Chunpeng Shi Yuqiu Chao Xiao Wang Shu Wang Bo Qu Yanan Jiang 《Frigid Zone Medicine》 2025年第4期217-230,共14页
Background:Cold exposure is associated with metabolic alterations.This study aims to investigate the effects and mechanisms of cold exposure on liver metabolism through the integration of transcriptomics and metabolom... Background:Cold exposure is associated with metabolic alterations.This study aims to investigate the effects and mechanisms of cold exposure on liver metabolism through the integration of transcriptomics and metabolomics.Methods:Liver tissues from mice exposed to cold were subjected to RNA sequencing and liquid chromatography-mass spectrometry(LC-MS)for transcriptomic and metabolomic profiling,respectively.Differentially expressed genes(DEGs)and differentially expressed metabolites(DEMs)were identified.mRNA expression levels were validated by real-time polymerase chain reaction(RT-PCR).Gene ontology(GO),Kyoto encyclopedia of genes and genomes(KEGG),and Reactome enrichment analyses were performed.Finally,transcriptomic and metabolomic data were integrated and analyzed.Results:Cold exposure altered the transcriptomic and metabolomic profiles in the liver in cold exposed mice.Enrichment analyses were of DEGs and DEMs.Enrichment analyses of DEGs and DEMs revealed that DEGs were involved in pathways such as the PI3K-Akt signaling pathway,cytokine-cytokine receptor interaction,and cell adhesion molecules.DEMs were enriched in pathways related to membrane transport,nucleotide metabolism,and the metabolism of cofactors and vitamins.The integration of transcriptomic and metabolomic data identified several pathways potentially associated with cold exposure,such as the PI3K-Akt signaling pathway.Conclusion:Cold exposure alters liver transcriptomic and metabolomic profiles in mice.The integrative analysis of transcriptomic and metabolomic data highlights the complexity of the liver's response to cold exposure and identifies potential targets for further investigation. 展开更多
关键词 cold exposure liver metabolism TRANSCRIPTOME METABOLOME
原文传递
Frontogenesis and frontolysis of cold filament impacted by different directions of wind and wave fields using large eddy simulation
20
作者 Guojing LI Dongxiao WANG +2 位作者 Changming DONG Yeqiang SHU Yunkai HE 《Journal of Oceanology and Limnology》 2025年第3期676-691,共16页
The variations of the frontogenetic activity of cold filament driven by the different angle(θ=0°,22.5°,45°,67.5°,and 90°)of the wind and wave fields and the filament axis are studied by non h... The variations of the frontogenetic activity of cold filament driven by the different angle(θ=0°,22.5°,45°,67.5°,and 90°)of the wind and wave fields and the filament axis are studied by non hydrostatic large eddy simulation.Conversion between the frontogenesis and frontolysis of cold filament were created by the chang in the direction of secondary circulations.The changes in the direction of secondary circulation are induced by the Coriolis Effect regardless of wind direction and wave fields.The destructive action of the wind and wave fields on symmetry of the submesoscale flow fields becomes weak as the angle increases.The secondary downwelling jet induced by Stokes shear force is gradually close to that associated with secondary circulations as the angle changes fromθ=0°to 45°and then the downwelling jet is only created by secondary circulations forθ=67.5°and 90°.The frontogenetic intensity of cold filament may be impacted by the angle of the wind and wave fields and the filament axis.The reason is that firstly the odd-symmetry of secondary circulations enhances with the angle increasing,and secondary the secondary downwelling jet created the Stokes shear force gradually weakens and then disappears with the angle increasing. 展开更多
关键词 cold filament FRONTOGENESIS FRONTOLYSIS secondary circulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部