期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
1
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于K均值聚类和VMD-COA-BiLSTM的光伏功率预测 被引量:1
2
作者 查航伟 成燕 黄瑞承 《热能动力工程》 北大核心 2025年第5期157-165,共9页
光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和... 光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和双向长短期记忆神经网络(VMD-COA-BiLSTM)的光伏功率短期预测模型。针对光伏数据的复杂非线性特征、噪声干扰以及高维特征等问题,通过K均值聚类将数据划分为3种天气类型,增强模型映射能力;利用VMD将聚类之后的原始信号分解,采用中心频率法确定最佳模态数,充分提取集合中的输入因素信息,提高数据质量;将分解后的各分量分别输入BiLSTM网络进行预测,采用COA优化BiLSTM的超参数配置,实现不同天气类型下的光伏功率的准确预测。结果表明:K均值聚类和VMD算法有效提升了数据质量,增强了输入、输出数据的耦合强度;COA优化BiLSTM模型在优化能力和收敛速度上均优于粒子群算法(PSO);所提出的VMD-COA-BiLSTM模型在晴天、多云和阴雨天的RMSE分别降低了35.24%,45.54%和42.88%,显著提高了预测精度,且能适应不同环境下的可靠预测。 展开更多
关键词 光伏发电功率 预测 K-MEANS聚类 变分模态分解 长鼻浣熊算法 双向长短期记忆神经网络
原文传递
Research on multiple-strategy improved coati optimization algorithm for engineering applications
3
作者 GAO Yaqiong WU Jin +1 位作者 SU Zhengdong LI Chaoxing 《High Technology Letters》 EI CAS 2024年第4期405-414,共10页
In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and ... In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms. 展开更多
关键词 coati optimization algorithm(coa) chaotic map multi-strategy
在线阅读 下载PDF
基于COA-CNN模型的综采工作面煤与瓦斯突出灾害预测研究
4
作者 许爱国 《陕西煤炭》 2025年第2期62-66,共5页
随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线... 随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线图(Boxplot)与多重插补法(MI)进行数据清洗,结合相关系数(Correlation)筛选影响因素,建立基于Boxplot-MI-C的煤与瓦斯突出预测指标体系。然后运用深度学习中的卷积神经网络(CNN)搭建模型框架,结合鸬鹚搜索算法(COA)优化模型超参数,建立基于COA-CNN的煤与瓦斯突出预测模型。最后,建立支持向量机(SVM)、COA-SVM、人工神经网络(ANN)、COA-ANN、CNN模型进行对比验证,其中,COA-CNN模型预测结果的准确率最高,拥有更优的鲁棒性与泛化能力,可以为煤与瓦斯突出灾害的预测与防控提供更好的决策参考。 展开更多
关键词 煤与瓦斯突出 数据清洗 指标体系 coa优化算法 CNN预测模型
在线阅读 下载PDF
AI-Integrated Feature Selection of Intrusion Detection for Both SDN and Traditional Network Architectures Using an Improved Crayfish Optimization Algorithm
5
作者 Hui Xu Wei Huang Longtan Bai 《Computers, Materials & Continua》 2025年第8期3053-3073,共21页
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ... With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures. 展开更多
关键词 Software-defined networking(SDN) intrusion detection artificial intelligence(AI) feature selection crayfish optimization algorithm(coa)
在线阅读 下载PDF
基于参数优化VMD的心率检测去噪算法
6
作者 肖剑 张现国 +2 位作者 宋烨 杨小苑 程鸿亮 《现代雷达》 北大核心 2025年第6期46-55,共10页
针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性... 针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性和全局搜索能力,文中利用ICOA对VMD的最佳适应度参数进行搜索,确定惩罚参数和分量个数,对心跳信号进行重构,从而实现心跳信号的干扰噪声去除。实验结果表明,ICOA-VMD方法具有收敛速度快、精度高的特点,信噪比和均方误差的评估和时域分析验证了该算法相较于小波变换和经验模态分解具有更好的性能。在不同距离的常规环境下,该方法针对不同受试者的心率检测平均精确度可以达到95.40%。 展开更多
关键词 毫米波雷达 信号处理 心率检测 浣熊优化算法 变分模态分解
原文传递
基于WD-COA-LSTM模型的月降水量预测 被引量:9
7
作者 王文川 杨静欣 臧红飞 《水资源与水工程学报》 CSCD 北大核心 2022年第4期8-13,23,共7页
为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过... 为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。 展开更多
关键词 月降水量预测 小波分解 郊狼优化算法 长短期记忆神经网络
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
8
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子群优化随机森林(APSO-RF)模型 浣熊优化算法(coa)
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
9
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于COA-ASRCKF的单液流锌镍电池SOC估计
10
作者 宋春宁 苏有平 +1 位作者 莫伟县 郑少耿 《电池》 CAS 北大核心 2021年第4期351-355,共5页
针对容积卡尔曼滤波(CKF)算法在迭代过程中存在诸多破坏协方差对称性和正定性的敏感操作,进而导致算法终止的现象,提出一种自适应平方根容积卡尔曼滤波(ASRCKF)算法。采用ASRCKF算法在估算单液流锌镍电池荷电状态(SOC)时,过程噪声协方差... 针对容积卡尔曼滤波(CKF)算法在迭代过程中存在诸多破坏协方差对称性和正定性的敏感操作,进而导致算法终止的现象,提出一种自适应平方根容积卡尔曼滤波(ASRCKF)算法。采用ASRCKF算法在估算单液流锌镍电池荷电状态(SOC)时,过程噪声协方差Q、量测噪声协方差初值R(0)和状态误差协方差初值P_(0)的设定,对估算精度和鲁棒性有重要影响。为此,应用郊狼优化算法(COA)对Q、R(0)和P_(0)进行参数寻优。实验结果表明,提出的COA-ASRCKF算法能较好地应用于单液流锌镍电池SOC估计。与CKF和ASRCKF算法相比,估算精度更高、鲁棒性更强,均方根误差小于1%。 展开更多
关键词 单液流锌镍电池 荷电状态(SOC) 郊狼优化算法(coa) 自适应平方根容积卡尔曼滤波(ASRCKF)算法 参数寻优
在线阅读 下载PDF
基于RTSMFE、M-KRCDA与COA-SVM的行星齿轮箱故障诊断 被引量:5
11
作者 戚晓利 崔创创 +2 位作者 杨艳 程主梓 陈旭 《振动与冲击》 EI CSCD 北大核心 2022年第21期109-120,共12页
针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized copl... 针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized coplanar discriminant analysis,M-KRCDA)以及郊狼优化算法优化支持向量机(coyote optimization algorithm-support vector machine,COA-SVM)的行星齿轮箱故障诊断方法。首先利用RTSMFE计算和组合行星齿轮箱原始故障信号的特征向量,构建原始高维故障特征集;然后采用M-KRCDA的特征筛选方法,减少了特征的维数并提高特征故障识别的准确性和效率;最后将低维特征输入到COA-SVM进行故障类型的判别。行星齿轮箱故障诊断试验结果分析表明,所提方法能够准确识别行星齿轮箱的常见故障,具有一定的应用前景。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移多尺度模糊熵(RTSMFE) 马氏距离的核正则化共面判别分析(M-KRCDA) 郊狼优化算法优化支持向量机(coa-SVM)
在线阅读 下载PDF
A new optimization algorithm based on chaos 被引量:19
12
作者 LU Hui-juan ZHANG Huo-ming MA Long-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期539-542,共4页
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ... In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones. 展开更多
关键词 Chaos optimization algorithm coa Carrier wave two times Multi-variables optimization Carrier wave triple frequency
在线阅读 下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法 被引量:4
13
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
在线阅读 下载PDF
基于缩放框架的改进贝叶斯网络结构优化算法
14
作者 祁煜翔 钱龙霞 +1 位作者 王友国 黄海平 《南京邮电大学学报(自然科学版)》 北大核心 2024年第6期128-138,共11页
贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础... 贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础构建网络搜索空间,提高了网络结构的初始评分;其次,使用基于评分方法的浣熊优化算法寻找评分最高的网络结构,增强了在贝叶斯网络中的评分搜索能力;最后,对评分最高的结构进行加弧、减弧和转向弧操作,寻找拟合程度最高的最优结构。通过在不同复杂度的标准网络上进行模拟实验,结果表明:所提算法收敛速度更快,能够在较短时间内找到最优结构,且结构学习的评分更高,收敛精度较高。由此说明该算法在准确性和搜寻效率方面更有优势。 展开更多
关键词 贝叶斯网络 结构学习 缩放框架 评分方法 浣熊优化算法
在线阅读 下载PDF
基于COA算法和PSO-GSA算法的储能优化与调控方法 被引量:1
15
作者 李金中 徐斌 +1 位作者 李喆 张昆 《供用电》 北大核心 2025年第6期40-47,共8页
考虑未来大规模分布式能源接入配电网,且分布式能源出力具有随机性、波动性、间歇性的特点,提出了基于浣熊优化算法(coati optimization algorithm,COA)和粒子群优化-引力搜索算法(particle swarm optimization-gravitational search al... 考虑未来大规模分布式能源接入配电网,且分布式能源出力具有随机性、波动性、间歇性的特点,提出了基于浣熊优化算法(coati optimization algorithm,COA)和粒子群优化-引力搜索算法(particle swarm optimization-gravitational search algorithm,PSO-GSA)的储能优化与调控互动方法。COA与PSO-GSA平衡了局部搜索与全局搜索的能力。首先以配电网规划和配电网运行的稳定性为导向,将模型分为两层:上层通过COA算法进行储能位置配置及容量配置,下层通过PSO-GSA算法构建以配电网脆弱性和有功网损最小为目标的优化调控模型。然后计及光伏出力的时序性以及不同光伏渗透率等因素进行模型求解。最后用IEEE 33节点算例验证所提方法在配电网储能优化配置与运行上的合理性,可有效降低配电网脆弱性和有功网损,促进高比例渗透率光伏消纳。 展开更多
关键词 配电网 光伏消纳 coa算法 PSO-GSA算法 储能优化配置 储能调控
在线阅读 下载PDF
基于浣熊优化算法的电力系统负荷频率控制 被引量:4
16
作者 王勇 高红亮 +1 位作者 鲍新宇 周瑞 《自动化与仪表》 2024年第9期37-40,46,共5页
电力系统的频率稳定一直是电力系统稳定性研究的一个重要方面,负荷频率控制是维持电力系统频率稳定的有效手段。选取PID控制器做为电力系统的负荷频率控制器,同时采用浣熊优化算法(COA)在4种误差积分准则下分别对控制器的参数进行优化... 电力系统的频率稳定一直是电力系统稳定性研究的一个重要方面,负荷频率控制是维持电力系统频率稳定的有效手段。选取PID控制器做为电力系统的负荷频率控制器,同时采用浣熊优化算法(COA)在4种误差积分准则下分别对控制器的参数进行优化。将采用浣熊优化算法优化的PID控制器(COA-PID)与传统PID控制器对电力系统负荷频率的控制效果对比,结果表明,采用COA-PID控制器可以更有效地实现对电力系统的负荷频率控制,它可以有效地降低系统的最大频率偏差以及维持系统的频率稳定。 展开更多
关键词 电力系统 负荷频率控制 浣熊优化算法 PID控制器
在线阅读 下载PDF
基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究
17
作者 周亚罗 李子轩 +2 位作者 张少川 刘文广 张瑞成 《矿冶工程》 CAS 北大核心 2024年第6期144-150,共7页
针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精... 针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精度。以某公司热轧1 580 mm生产线实测数据进行凸度预测仿真研究,随机森林与支持向量机加权预测模型的均方根误差为2.23μm,与随机森林模型、支持向量机模型预测精度进行比较,加权预测模型的精度分别提高了7.08%、2.62%。 展开更多
关键词 凸度预测 热轧带钢 支持向量机 长鼻浣熊算法 凸度 随机森林
在线阅读 下载PDF
基于随机共振的井下无线电磁2FSK信号解调
18
作者 张国辉 李伟勤 《石油机械》 北大核心 2024年第9期10-16,共7页
井场及周边电器所带来的噪声干扰会对接收到的无线电磁2FSK调制信号产生影响,在信噪比低时提取信号特征困难。为此,提出了一种基于浣熊算法的自适应双稳态随机共振系统,以降低2FSK信号的误码率。该方法充分利用浣熊算法的全局探索和局... 井场及周边电器所带来的噪声干扰会对接收到的无线电磁2FSK调制信号产生影响,在信噪比低时提取信号特征困难。为此,提出了一种基于浣熊算法的自适应双稳态随机共振系统,以降低2FSK信号的误码率。该方法充分利用浣熊算法的全局探索和局部优化平衡能力,通过并行选择和优化随机共振系统的多个参数,以获得系统输出的最大信噪比增益。利用卷积神经网络对随机共振系统输出的信号进行解调,并评估其误码率。仿真和试验结果表明,在低信噪比条件下,基于浣熊算法的随机共振系统输出信号的特征频率相对于蚁群优化算法更加显著,并且具有更低的误码率。研究结果可为井下信号实时传输提供技术支撑。 展开更多
关键词 井下信号传输 随机共振 浣熊算法 卷积神经网络 2FSK调制信号 误码率
在线阅读 下载PDF
基于黑猩猩算法的风光蓄火联合发电系统优化调度 被引量:1
19
作者 陈义成 刘闯 +2 位作者 陈雪飞 曾芮清 陈磊 《黄河水利职业技术学院学报》 2024年第3期35-40,共6页
为了提高风光蓄火联合发电系统的经济效益,降低弃风弃光量,以联合发电系统的收益最大为优化目标,全面考虑系统约束条件,建立了风光蓄火联合发电系统优化调度模型,采用黑猩猩优化算法(Chimp Optimization Algorithm,COA)对调度模型进行... 为了提高风光蓄火联合发电系统的经济效益,降低弃风弃光量,以联合发电系统的收益最大为优化目标,全面考虑系统约束条件,建立了风光蓄火联合发电系统优化调度模型,采用黑猩猩优化算法(Chimp Optimization Algorithm,COA)对调度模型进行求解。将该模型用于我国西南地区某联合发电系统的优化调度,结果表明,通过COA算法对联合发电系统的优化,增加了风电、光伏的出力,这样既提高了联合发电系统的经济效益,同时又减少了对环境的影响。将COA算法与GWO算法、PSO算法和GA算法进行比对,其收敛代数、计算时间、最大发电收益均优于其他对比算法,验证了COA算法在对联合发电系统优化调度时的优势。 展开更多
关键词 联合发电系统 黑猩猩优化算法 调度模型 目标函数 约束条件
在线阅读 下载PDF
基于Bootstrap-COA-BiGRU模型的TBM掘进步稳定段掘进参数区间预测 被引量:1
20
作者 张广 龚秋明 +2 位作者 谢兴飞 裴成元 尚层 《现代隧道技术》 北大核心 2025年第2期121-131,共11页
针对现有TBM掘进步稳定段掘进参数点预测模型忽略预测过程中的不确定性误差,且无法描述预测结果的可信度问题,提出一种基于Bootstrap-COA-BiGRU算法的TBM掘进步稳定段掘进参数区间预测模型。首先,采用COA算法优化BiGRU神经网络的超参数... 针对现有TBM掘进步稳定段掘进参数点预测模型忽略预测过程中的不确定性误差,且无法描述预测结果的可信度问题,提出一种基于Bootstrap-COA-BiGRU算法的TBM掘进步稳定段掘进参数区间预测模型。首先,采用COA算法优化BiGRU神经网络的超参数,使得模型能够更好地自主学习TBM掘进上升段数据在时间和特征维度上蕴含的岩机相互作用非线性关系,有效提升模型的预测精度。其次,通过分析点预测模型的预测结果,引入区间预测方法,量化表征TBM掘进步稳定段掘进参数预测过程中模型的不确定性和数据中的随机不确定性,获得高质量的稳定段掘进参数预测区间。最后,将该模型应用于新疆YEGS工程,开展Ⅱ~Ⅳ类围岩条件下的TBM掘进参数区间预测,并将预测结果与BP模型、GRU模型、BiGRU模型和COA-GRU模型进行对比,验证所建模型的优越性和方法的实用性,推动TBM智能化辅助施工的发展。 展开更多
关键词 Bootstrap-coa-BiGRU模型 TBM掘进步 掘进参数区间预测 双向门控循环单元 长鼻浣熊优化算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部