Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose...Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ...With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and ...In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms.展开更多
光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和...光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和双向长短期记忆神经网络(VMD-COA-BiLSTM)的光伏功率短期预测模型。针对光伏数据的复杂非线性特征、噪声干扰以及高维特征等问题,通过K均值聚类将数据划分为3种天气类型,增强模型映射能力;利用VMD将聚类之后的原始信号分解,采用中心频率法确定最佳模态数,充分提取集合中的输入因素信息,提高数据质量;将分解后的各分量分别输入BiLSTM网络进行预测,采用COA优化BiLSTM的超参数配置,实现不同天气类型下的光伏功率的准确预测。结果表明:K均值聚类和VMD算法有效提升了数据质量,增强了输入、输出数据的耦合强度;COA优化BiLSTM模型在优化能力和收敛速度上均优于粒子群算法(PSO);所提出的VMD-COA-BiLSTM模型在晴天、多云和阴雨天的RMSE分别降低了35.24%,45.54%和42.88%,显著提高了预测精度,且能适应不同环境下的可靠预测。展开更多
Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of t...Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method.展开更多
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ...Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms.展开更多
Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other...Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods:it has very few parameters,and no derivation information is required in the initial search.Also,it is simple,easy to use,flexible,scalable,and has a special capability to strike the right balance between exploration and exploitation during the search which leads to favorable convergence.Therefore,the ChOA has recently gained a very big research interest with tremendous audiences from several domains in a very short time.Thus,in this review paper,several research publications using ChOA have been overviewed and summarized.Initially,introductory information about ChOA is provided which illustrates the natural foundation context and its related optimization conceptual framework.The main operations of ChOA are procedurally discussed,and the theoretical foundation is described.Furthermore,the recent versions of ChOA are discussed in detail which are categorized into modified,hybridized,and paralleled versions.The main applications of ChOA are also thoroughly described.The applications belong to the domains of economics,image processing,engineering,neural network,power and energy,networks,etc.Evaluation of ChOA is also provided.The review paper will be helpful for the researchers and practitioners of ChOA belonging to a wide range of audiences from the domains of optimization,engineering,medical,data mining,and clustering.As well,it is wealthy in research on health,environment,and public safety.Also,it will aid those who are interested by providing them with potential future research.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi...Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.展开更多
文章以线圈电流波形的时间和电流值为特征量,断路器5种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-L...文章以线圈电流波形的时间和电流值为特征量,断路器5种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-LSTM的高压断路器故障诊断模型。采用断路器故障数据进行仿真,并与现有断路器故障诊断模型进行对比分析。对比测试结果表明,ICOA-LSTM模型的诊断精度更高,计算时间更短,验证了ICOA-LSTM模型的优越性和有效性。展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
基金supported by the Shaanxi Province Natural Science Basic Research Program Project(2024JC-YBMS-572)partially funded by Yan’an University Graduate Education Innovation Program Project(YCX2023032,YCX2023033,YCX2024094,YCX2024097)the“14th Five Year Plan Medium and Long Term Major Scientific Research Project”(2021ZCQ015)of Yan’an University.
文摘Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金Supported by the National Key R&D Program of China(2022ZD0119001).
文摘In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms.
文摘光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和双向长短期记忆神经网络(VMD-COA-BiLSTM)的光伏功率短期预测模型。针对光伏数据的复杂非线性特征、噪声干扰以及高维特征等问题,通过K均值聚类将数据划分为3种天气类型,增强模型映射能力;利用VMD将聚类之后的原始信号分解,采用中心频率法确定最佳模态数,充分提取集合中的输入因素信息,提高数据质量;将分解后的各分量分别输入BiLSTM网络进行预测,采用COA优化BiLSTM的超参数配置,实现不同天气类型下的光伏功率的准确预测。结果表明:K均值聚类和VMD算法有效提升了数据质量,增强了输入、输出数据的耦合强度;COA优化BiLSTM模型在优化能力和收敛速度上均优于粒子群算法(PSO);所提出的VMD-COA-BiLSTM模型在晴天、多云和阴雨天的RMSE分别降低了35.24%,45.54%和42.88%,显著提高了预测精度,且能适应不同环境下的可靠预测。
基金supported by the Key Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Teaching Research Project of Hubei University of Technology(No.2020099).
文摘Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method.
文摘Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(23UQU4361183DSR03).
文摘Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods:it has very few parameters,and no derivation information is required in the initial search.Also,it is simple,easy to use,flexible,scalable,and has a special capability to strike the right balance between exploration and exploitation during the search which leads to favorable convergence.Therefore,the ChOA has recently gained a very big research interest with tremendous audiences from several domains in a very short time.Thus,in this review paper,several research publications using ChOA have been overviewed and summarized.Initially,introductory information about ChOA is provided which illustrates the natural foundation context and its related optimization conceptual framework.The main operations of ChOA are procedurally discussed,and the theoretical foundation is described.Furthermore,the recent versions of ChOA are discussed in detail which are categorized into modified,hybridized,and paralleled versions.The main applications of ChOA are also thoroughly described.The applications belong to the domains of economics,image processing,engineering,neural network,power and energy,networks,etc.Evaluation of ChOA is also provided.The review paper will be helpful for the researchers and practitioners of ChOA belonging to a wide range of audiences from the domains of optimization,engineering,medical,data mining,and clustering.As well,it is wealthy in research on health,environment,and public safety.Also,it will aid those who are interested by providing them with potential future research.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.
基金supported by the Researchers Supporting Program(TUMA-Project-2021–27)Almaarefa University,Riyadh,Saudi ArabiaTaif University Researchers Supporting Project Number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.
文摘文章以线圈电流波形的时间和电流值为特征量,断路器5种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-LSTM的高压断路器故障诊断模型。采用断路器故障数据进行仿真,并与现有断路器故障诊断模型进行对比分析。对比测试结果表明,ICOA-LSTM模型的诊断精度更高,计算时间更短,验证了ICOA-LSTM模型的优越性和有效性。
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
文摘提出了一种基于黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)的改进算法。通过引入Bernoulli映射序列初始化种群,替代随机初始化;采用自适应非线性收敛因子,替代线性收敛因子;以及添加基于贪婪选择的邻域扰动机制,提出了融合多策略的邻域扰动黑猩猩算法(Chimp Optimization Algorithm for Bernoulli and Adaptive nonlinear convergence factor with Neighborhood perturbation,BANChOA)。实验结果表明,BANChOA在解决母猪饲料配方优化问题上表现出色,相比于ChOA,BANChOA在妊娠前期母猪饲料配方的成本优化上,每千克减少了8.5%,在妊娠后期每千克减少了14.4%,在哺乳期每千克减少了18.2%。为降低母猪养殖成本奠定了基础。