期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
1
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures MICROSTRUCTURES Annealingtemperatures
原文传递
Achieving reusability of leachate for multi-element recovery of the discarded LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathode by regulating the co-precipitation coefficient
2
作者 Liang Lou Xuncheng Liu +8 位作者 Yuanyu Wang Tao Hu Zhongjie Wang Houqiang Shi Junkai Xiong Siqi Jing Liankang Ye Qihui Guo Xiang Ge 《Chinese Chemical Letters》 2025年第5期711-716,共6页
Conventional hydrometallurgy recycling process for treating wasted lithium-ion batteries(LIBs)typically results in the consumption of large amounts of corrosive leachates.Recent research on reusable leachate is expect... Conventional hydrometallurgy recycling process for treating wasted lithium-ion batteries(LIBs)typically results in the consumption of large amounts of corrosive leachates.Recent research on reusable leachate is expected to significantly improve the economic and environmental benefits,but is usually limited to specific and unique chemical reactions which could only apply to one type of metal elements.Herein,we report the co-extraction of multiple metal elements can be extracted without adding precipitates by mixed crystal co-precipitation,which enables the reusability of the leachate.We show that an oxalic acid(OA):choline chloride(ChCl):ethylene glycol(EG)type DES leachate system can leach transition metals from wasted LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM)cathode materials with satisfactory efficiency(The time required for complete leaching at 120℃ is 1.5 h).The transition metals were then efficiently extracted(with a recovery efficiency of over 96%for all elements)by directly adding water without precipitants.Noteworthy,the leachate can be efficiently recovered by directly evaporating the added water.The successful realization of reusability of leachate for the synergistic extraction of multiple elements relies on the regulation of the mixed crystal co-precipitation coefficient,which is realized by rationally design the reaction condition(composition of leachate,temperature and time)and induces the extraction of originally soluble manganese element.Our strategy is expected to be generally applicable and highly competent for industrial applications. 展开更多
关键词 Lithium-ion batteries recycle Reusable leachate Deep eutectic solvent Mixed crystal co-precipitation Co-extraction
原文传递
Co-Precipitation of Ni-Rich Me(OH)_(2) Precursors for High Performance LiNi_(x)Mn_(y)Co_(1-x-y)O_(2) Cathodes:A Review
3
作者 Jun Wang Budiman Batara +8 位作者 Kaihua Xu Kun Zhang Wenchao Hua Yaguang Peng Wenze Liu Anisa Helena Isma Putri Yuhui Xu Xueliang Sun Xifei Li 《Energy & Environmental Materials》 2025年第6期24-52,共29页
The LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM)cathode materials have emerged as critical components in lithium-ion batteries due to their high energy and power densities.The co-precipitation method is widely used in laborator... The LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM)cathode materials have emerged as critical components in lithium-ion batteries due to their high energy and power densities.The co-precipitation method is widely used in laboratory and industry settings to optimize the crystallinity,grain morphology,particle size,and sphericity of precursor materials,directly affecting NCM battery performance.This review addresses the nucleation mechanism and the thermodynamic and kinetic reaction processes of co-precipitation.The comprehensive effects of key parameters on precursor physicochemical properties are also systematically interpreted. 展开更多
关键词 cathode materials co-precipitation growth mechanism hydroxide precursor lithium-ion batteries Ni_xCo_yMn_(1-x-y)(OH)_(2)
在线阅读 下载PDF
Effects of synthesis conditions on layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries 被引量:7
4
作者 胡传跃 郭军 +2 位作者 杜勇 徐洪辉 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期114-120,共7页
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s... Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g. 展开更多
关键词 layered structure coordination effect hydroxide co-precipitation cathode material lithium ion batteries
在线阅读 下载PDF
Recovery of iron from waste ferrous sulphate by co-precipitation and magnetic separation 被引量:7
5
作者 余旺 彭映林 郑雅杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期211-219,共9页
Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal rea... Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively. 展开更多
关键词 ferrous sulphate titanium dioxide magnetite concentrate co-precipitation wet milling magnetic separation
在线阅读 下载PDF
Preparation of MnxNi0.5-xZn0.5Fe2O4 Nanorods by the Co-precipitation Method 被引量:2
6
作者 李巧玲 常传波 +1 位作者 张巍 张豪 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期680-684,745,746,共7页
MnxNi0.5-xZn0.5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, an... MnxNi0.5-xZn0.5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, and particle diameter were examined by the X-ray diffraction and transmission electron microscopy. The magnetic properties of the samples were studied using a vibrating sample magnetometer. nanorods with a diameter of 35 nm and an The results indicated that pure Ni0.5-xZn0.5Fe2O4 aspect ratio of 15 were prepared. It was found that the diametei of the MnxNi0.5-xZn0.5Fe2O4(0≤x≤0.5) samples increased, the length and the aspect .ratio decreased, with an increase in x value. When x=0.5, the diameter and the aspect ratio of the sample reached up to 50 nm and 7-8, respectively. The coercivity of the samples first increased and then decreased with the increase in the x value. The coercivity of the samples again increased when the x value was higher than 0.4. When x=0.5, the coercivity of the MnxNi0.5-xZn0.5Fe2O4 sample reached the maximal value (134.3 Oe) at the calcination temperature of 600 ℃. The saturation magnetization of the samples first increased and then. decreased with the increase in the x value. When x=0.2, the saturation magnetizat:ion of the sample reached the maximal value (68.5 emu/g) at the calcination temperature of 800 ℃. 展开更多
关键词 MnxNi0.5-xZn0.5Fe2O4 Nanorod co-precipitation Magnetic property
在线阅读 下载PDF
Effect of precipitants on Ni-CeO_2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction 被引量:11
7
作者 王路辉 刘辉 +2 位作者 刘源 陈英 杨淑清 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第10期969-974,共6页
A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalyti... A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Bmmaner-Emmett-Teller method (BET), Fou- rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam- ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as: Ni-CeO2-CP (Na2CO3:NaOH=I:I)〉Ni-CeO2-CP(Na2CO3)〉Ni-CeO2-CP(NaOH)- Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant hadthe most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=I: 1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance. 展开更多
关键词 reverse water-gas shift reaction Ni-CeO2 catalyst co-precipitation oxygen vacancy PRECIPITANT rare earths
原文传递
Electrochemical performance of Ti^(4+)-doped LiFePO_4 synthesized by co-precipitation and post-sintering method 被引量:10
8
作者 伍凌 王志兴 +4 位作者 李新海 李灵均 郭华军 郑俊超 王小娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期814-818,共5页
Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped L... Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped LiFePO4 was prepared by an ambient-reduction and post-sintering method using the as-prepared precursor,Li2CO3 and oxalic acid as raw materials.The samples were characterized by scanning electron microscopy (SEM),X-ray diffractometry (XRD),electrochemical impedance spectroscopy (EIS),and electrochemical charge/discharge test.Effects of Ti4+-doping and sintering temperature on the physical and electrochemical performance of LiFePO4 powders were investigated.It is noted that Ti4+-doping can improve the electrochemical performance of LiFePO4 remarkably.The Ti4+-doped sample sintered at 600 ℃ delivers an initial discharge capacity of 150,130 and 125 mA·h/g with 0.1C,1C and 2C rates,respectively,without fading after 40 cycles. 展开更多
关键词 lithium-ion battery cathode material LIFEPO4 Ti4+-doping co-precipitation
在线阅读 下载PDF
Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: Effect of co-precipitation pH value 被引量:6
9
作者 Yujin Sim Jihoon Yoo +1 位作者 Jeong-Myeong Ha Ji Chul Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期1-8,I0001,共9页
Oxidative coupling of methane(OCM) was conducted over LaAlO3X catalysts that were prepared by a coprecipitation method using different co-precipitation pH values(X = 6–10). The aim is to investigate the effect of p H... Oxidative coupling of methane(OCM) was conducted over LaAlO3X catalysts that were prepared by a coprecipitation method using different co-precipitation pH values(X = 6–10). The aim is to investigate the effect of p H values on the catalytic activity of La AlO3 catalysts in this reaction. The results showed that the co-precipitation pH value affected greatly on the formation of chemical species of precipitate precursors in the co-precipitation step, leading to different phases of the finally obtained LaAlO3 catalysts.When the co-precipitation pH value increased up to 8, the lanthanum-related phases such as La2 O3 and La(OH)3 were gradually formed as by-products, preventing the formation of LaAlO3 perovskite crystalline structure and facilitating the formation of oxygen vacancies on catalyst surface. However, at pH value of9 or higher, the lanthanum content in the precipitate precursor was increased greatly. Not LaAlO3 perovskite but lanthanum-related phases were developed as main phases, reducing their catalytic activities in this reaction. Among LaAlO3 catalysts, the one prepared at pH = 8 showed the highest C2 yield due to its well-developed oxygen vacancies and electrophilic lattice oxygen. Therefore, the co-precipitation pH value strongly affected the LaAlO3 catalyst activity in OCM reaction. A precious pH control should be required to prepare various perovskite catalysts for the OCM. 展开更多
关键词 LAALO3 PEROVSKITE OXIDATIVE coupling of METHANE co-precipitation pH value
在线阅读 下载PDF
Fluorescence and preparation of Sr_2(P_2O_7 ):Ce,Tb phosphate by co-precipitation method 被引量:8
10
作者 Cheng-Guo Ma Wei Zheng +1 位作者 Li-Guo Jin Li-Min Dong 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期420-424,共5页
The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase struc... The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors. 展开更多
关键词 PHOSPHORS co-precipitation method Rareearth phosphate PHOSPHORESCENCE
在线阅读 下载PDF
Study on co-precipitation synthesized Y_3Al_5O_(12):Ce yellow phosphor for white LED 被引量:8
11
作者 张书生 庄卫东 +5 位作者 何涛 刘元红 刘荣辉 高文贵 胡运生 龙震 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第5期713-716,共4页
A precursor of the Y3Al5O12:Ce (YAG:Ce) phosphor was obtained by co-precipitation of the solution of high purity nitrates with ammonium bicarbonate solution. The precipitation process of the precursor was studied in t... A precursor of the Y3Al5O12:Ce (YAG:Ce) phosphor was obtained by co-precipitation of the solution of high purity nitrates with ammonium bicarbonate solution. The precipitation process of the precursor was studied in this work. YAG:Ce yellow phosphors with fine morphology was synthesized by annealing the precursor at a reducing atmosphere. The crystal phase, microstructure of the phosphors and their photoluminescence were investigated. The results indicated that the pure phase of YAG:Ce could be obtained at ... 展开更多
关键词 rare earths YAG:Ce co-precipitation white LED
原文传递
Effects of synthesis conditions on the structural and electrochemical properties of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material via oxalate co-precipitation method 被引量:6
12
作者 TIAN Hua YE Naiqing +1 位作者 LIU Dan LI Wenqun 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期575-579,共5页
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc... The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature. 展开更多
关键词 lithium ion batteries oxalate co-precipitation method cathode materials electrochemical performance
在线阅读 下载PDF
Effect of Ferric Chloride on the Properties of Biological Sludge in Co-precipitation Phosphorus Removal Process 被引量:6
13
作者 张志斌 李艺 +3 位作者 魏垒垒 吕育锋 王猛 高宝玉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第5期564-568,共5页
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the... This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering. 展开更多
关键词 biological phosphorous removal process chemical co-precipitation phosphorus removal process ferric chloride municipal wastewater SLUDGE
在线阅读 下载PDF
Synthesis and electrochemical performances of high-voltage LiNi_0.5Mn_1.5O_4 cathode materials prepared by hydroxide co-precipitation method 被引量:6
14
作者 Shuang Li Yue Yang +1 位作者 Ming Xie Qin Zhang 《Rare Metals》 SCIE EI CAS CSCD 2017年第4期277-283,共7页
Spherical cathode material LiNi_0.5Mn_1.5O_4 for lithium-ion batteries was synthesized by hydroxide co- precipitation method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical mea- su... Spherical cathode material LiNi_0.5Mn_1.5O_4 for lithium-ion batteries was synthesized by hydroxide co- precipitation method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical mea- surements were carried out to characterize prepared LiNi_0.5Mn_1.5O_4 cathode material. SEM images show that the LiNi_0.5Mn_1.5O_4 cathode material is constituted by micro-sized spherical particles (with a diameter of around 8 μm). XRD patterns reveal that the structure of prepared LiNi_0.5Mn_1.5O_4 cathode material belongs to Fd3m space group. Electrochemical tests at 25℃show that the LiNi_0.5Mn_1.5O_4 cathode material prepared after annealing at 600 ℃ has the best electrochemical performances. The initial discharge capacity of prepared cathode material delivers 113.5 mAh·g-1 at 1C rate in the range of 3.50-4.95 V, and the sample retains 96.2% (1.0C) of the initial capacity after 50 cycles. Under different rates with a cutoff voltage range of 3.50-4.95 V at 25℃, the dis- charge capacities of obtained cathode material can be kept at about 145.0 (0.1C), 126.8 (0.5C), 113.5 (1.0C) and 112.4mAh·g-1 (2.0C), the corresponding initial coulomb efficiencies retain above 95.2% (0.1C), 95.0% (0.5C), 92.5% (1.0C) and 94.8% (2.0C), respectively. 展开更多
关键词 Lithium-ion battery LiNi_0.5Mn_1.5O_4 Hydroxide co-precipitation Electrochemical performance
原文传递
Luminescent properties of Eu^(3+) doped Gd_2WO_6 and Gd_2(WO_4)_3 nanophosphors prepared via co-precipitation method 被引量:4
15
作者 张庆 孟庆裕 +3 位作者 田跃 冯晓辉 孙江亭 吕树臣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第9期815-821,共7页
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray dif... Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED. 展开更多
关键词 red nanophosphors TUNGSTATE co-precipitation luminescent properties rare earths
原文传递
Synthesis and electrochemical properties of LiNi_(0.8)Al_(0.2-x)Ti_xO_2 cathode materials by an ultrasonic-assisted co-precipitation method 被引量:4
16
作者 Meng Chen Wen-le Ao +2 位作者 Chang-song Dai Tao Tao Jun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期452-457,共6页
A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. U... A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8A10.2-xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8A10.2-xTixO2 cathode materials are 0.1,700℃, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8A10.2-xTixO2. 展开更多
关键词 lithium ion batteries cathode materials ultrasonic vibration co-precipitation electrochemical properties
在线阅读 下载PDF
Synthesis of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode material by chloride co-precipitation method 被引量:5
17
作者 李灵均 李新海 +3 位作者 王志兴 伍凌 郑俊超 李金辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期279-282,共4页
LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical me... LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical measurements.Effects of lithium ion content and sintering temperature on physical and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 were also investigated. The results show that the sample synthesized at 750℃with 105%lithium content has fine particle sizes around 200 nm and homogenous sizes distribution.The initial discharge capacity for the powder is 184 mA·h/g between 2.7 and 4.3 V at 0.1C and room temperature. 展开更多
关键词 lithium ion battery LiNi0.8Co0.1Mn0.1O2 chloride co-precipitation Rietveld refinement
在线阅读 下载PDF
Synthesis and characterization of YAG:Ce^(3+) fluorescence powders by co-precipitation method 被引量:4
18
作者 胡玉才 吕忆民 +2 位作者 于学华 周丽 于军胜 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期303-307,共5页
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as pr... YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C. 展开更多
关键词 YAG:Ce3+ powders co-precipitation method CHARACTERIZATION luminescence property rare earths
原文传递
Photoluminescence properties of YAG:Ce3+,pr3+nano-sized phosphors synthesized by a modified co-precipitation method 被引量:4
19
作者 戴鹏 吉成 +4 位作者 沈丽明 钱祺 郭国标 张晓艳 暴宁钟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第4期341-346,共6页
Abstract: Monophasic Ce3+ and Pr3+ co-doped yttrium aluminum garnet (YAG:Ce3+,pr3+) nanoparticles with good dispersity and uniform grain sizes in the range of 50-80 nm were prepared by a two-step route, which ... Abstract: Monophasic Ce3+ and Pr3+ co-doped yttrium aluminum garnet (YAG:Ce3+,pr3+) nanoparticles with good dispersity and uniform grain sizes in the range of 50-80 nm were prepared by a two-step route, which consisted of a modified co-precipitation preparation of mixed metal hydroxide hydrate intermediates at low temperature of about 40℃ and a subsequent calcination conversion of the synthesized intermediates to crystalline nanoparticle products at about 1000℃. The influences of both the lanthanide ion (Ce3+ and Pr3+) doping concentration and different doping (Ce3+/pr3+) ratio on the photoluminescence intensity were systematically investigated. The synthesized (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticles were near spherical nanoclusters with good dispersity and uniform sizes in the range of 50-80 nm for about 85% of the particles. The strongest photoluminescence intensity was observed for the (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticle products. 展开更多
关键词 YAG:Ce3+ pr3+ phosphor nanoparticles co-precipitation PHOTOLUMINESCENCE rare earths
原文传递
Solution-Phase Synthesis and Characterization of Perovskite LaCoO_3 Nanocrystals via A Co-Precipitation Route 被引量:3
20
作者 朱俊武 孙小杰 +3 位作者 王艳萍 汪信 杨绪杰 陆路德 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第5期601-604,共4页
A facile co-precipitation route for the synthesis of well-dispersed LaCoO3 nanocrystals was developed. The asprepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM),... A facile co-precipitation route for the synthesis of well-dispersed LaCoO3 nanocrystals was developed. The asprepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and laser Raman spectroscopy (LRS). The resuks showed that modulating the growth parameters, such as the addition of surfactants as well as the adding manner of the precipitator had a significant effect on the overall shape and size of the obtained nanocrystals. The nanorods with the diameter of 20 nm and spherical LaCoO3 nanocrystals with the size of about 25 nm could be obtained at a relatively low calcining temperature of 600℃. Furthermore, the Raman properties of LaCoO3 products obtained at different calcining temperatures were investigated. 展开更多
关键词 PEROVSKITE LACOO3 co-precipitation NANOCRYSTALS rare earths
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部