期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Promotion effect of adsorbed water/OH on the catalytic performance of Ag/activated carbon catalysts for CO preferential oxidation in excess H_2
1
作者 Yuanyuan Guo Limin Chen +2 位作者 Ding Ma Daiqi Ye Bichun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期591-598,共8页
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC cataly... Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst. 展开更多
关键词 promotion effect adsorbed water/OH Ag/activated carbon (Ag/AC) catalysts co preferential oxidation (PROX)
在线阅读 下载PDF
Maximizing the Pt-CuO_(x) interface by trace Cu boosts CO preferential oxidation
2
作者 Ya-Ke Lou Zhi-Hao Chen +7 位作者 Jia Shen Yang-Long Guo Wang-Cheng Zhan Ai-Yong Wang Núria J.Divins Jordi Llorca Li Wang Yun Guo 《Rare Metals》 2025年第8期5868-5876,共9页
Preferential oxidation of CO(CO-PROX)in H_(2)-rich streams is highly important for purifying the industrial grade H_(2)used in proton-exchange-membrane fuel cells(PEMFC),but it is still limited to a relatively narrow ... Preferential oxidation of CO(CO-PROX)in H_(2)-rich streams is highly important for purifying the industrial grade H_(2)used in proton-exchange-membrane fuel cells(PEMFC),but it is still limited to a relatively narrow operation temperature window.In this study,the trace amounts of Cu are used to modify a Pt/Al_(2)O_(3)catalyst.The introduced Cu_(2+)species are atomically anchored on Pt nanoparticles through strong electrostatic adsorption. 展开更多
关键词 strong electrostatic adsorption H rich streams preferential oxidation co preferential oxidation electrostatic adsorption trace Cu Pt CuOx interface proton exchange membrane fuel cells
原文传递
Cu-Co Composite Oxides Supported on Multi-walled Carbon Nanotubes for Catalytic Removal of CO in a H2-rich Stream
3
作者 刘宁 高玉仙 +1 位作者 汪文栋 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期523-529,I0003,共8页
Multi-walled carbon nanotubes (MWCNT) supported Cu-Co composite oxides catalysts were prepared by an ultrasonication treatment-aided impregnation method. The structure prop-erties of the catalysts were characterized... Multi-walled carbon nanotubes (MWCNT) supported Cu-Co composite oxides catalysts were prepared by an ultrasonication treatment-aided impregnation method. The structure prop-erties of the catalysts were characterized by XRD, TEM, H2-TPR, XPS and Raman spectra, indicating the strong interactions between Cu and Co mixed oxides as well as between metal oxides and MWCNT support. The catalytic performance of CO removal in a H2-rich stream was examined. In contrast to the single Cu and Co catalyst, the unique performance was ob-served for Cu-Co composite catalysts, which features an unusual reaction pathway through the combination of CO preferential oxidation and CO methanation especially at high reac-tion temperature. The optimal catalyst with Cu/Co ratio of 1/8 can achieve the complete CO conversion in a wider temperature range of 150-250 ℃ under the space velocity as high as 120 L/(h·g), which demonstrates a promising catalyst for the e ective CO removal in a H2-rich stream. 展开更多
关键词 copper coBALT Carbon nanotube co preferential oxidation co methanation
在线阅读 下载PDF
Selective and stable Au-Cu bimetallic catalyst for CO-PROX 被引量:3
4
作者 Feng Hong Guanjian Cheng +5 位作者 Weihao Hu Shengyang Wang Qike Jiang Junhong Fu Botao Qiao Jiahui Huang 《Nano Research》 SCIE EI CSCD 2023年第7期9031-9038,共8页
Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of ... Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of CO conversion at elevated temperature due to the competition of H_(2)oxidation,together with the low stability of gold nanoparticles,has posed a dear challenge.Herein,we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion(30-100℃)and very good catalyst stability without deactivation in a 200-h test.Detailed characterizations combined with density functional theory(DFT)calculation reveal that the synergistic effect of Au-Cu,the electron transfer from Au to Cu,leads to not only strengthened chemisorption of CO but also weakened dissociation of H_(2),both of which are helpful in inhibiting the competition of H_(2)oxidation thus widening the temperature window for CO total conversion. 展开更多
关键词 gold catalysis co preferential oxidation(co-PROX) electronic interaction galvanic replacement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部