It is well known that adsorbent material is the key to determine the CO_(2)adsorption performance.Herein,ZIF-8 derived porous carbon(ZIF-8-C)is anchored into the framework of a novel composite aerogel(ZCPx),which util...It is well known that adsorbent material is the key to determine the CO_(2)adsorption performance.Herein,ZIF-8 derived porous carbon(ZIF-8-C)is anchored into the framework of a novel composite aerogel(ZCPx),which utilizes chitosan(CS)and polyvinyl alcohol(PVA)as raw materials.By controlling the ratio of ZIF-8-C,the developed hierarchical porous structures combine the advantages of micropores,mesopores,and macropores.Besides,the ligand material of ZIF-8-C and the amino group from CS are two sources of the high nitrogen content of ZCPx.The optimized sample ZCP4 shows a high nitrogen content of 6.78%,which can create more active centers and supply basic sites,thereby enhancing the CO_(2)adsorption capacity.Moreover,ZC P4 composite aerogel presents a CO_(2)adsorption capacity of2.26 mmol·g^(-1)(298 K,0.1 MPa)and CO_(2)/N_(2)selectivity(S_(CO_(2))/N_(2))can reach 20.02,and the dynamic breakthrough experiment is performed to confirm the feasibility of CO_(2)/N_(2)actual separation performance,proving that the composite aerogel is potential candidates for CO_(2)adsorption.展开更多
A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has si...A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has significantly improved oxidation resistance.When the addition amount of Ti_(3)SiC_(2)is 75%,the carbonization volume shrinkage rate of the composite after aerobic static combustion is only 5.95%.At the same time,the LAR and MAR after 30 seconds of oxyacetylene ablation under a heat flux density of 1.5 MW/m2 are 0.0307 mm/s and 0.0149 g/s,respectively.The compressive strength after aerobic static combustion at 1000℃is up to 20.43%of that before aerobic static combustion,which is 1.99 times that of the unfilled material,significantly improving the high-temperature mechanical properties of the composite.展开更多
To optimize the preparation of alumina aerogels,the sol-gel method was combined with supercritical drying,using aluminum isopropoxide(AIP)as the precursor,ethanol(EtOH)as the solvent,and acetic acid(HAc)as the catalys...To optimize the preparation of alumina aerogels,the sol-gel method was combined with supercritical drying,using aluminum isopropoxide(AIP)as the precursor,ethanol(EtOH)as the solvent,and acetic acid(HAc)as the catalyst.The effects of the ethanol addition[n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:8:0.8:2,1:12:0.8:2,1:16:0.8:2,and 1:20:0.8:2]and acetic acid addition[n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:16:0.8:1,1:16:0.8:2,1:16:0.8:3,and 1:16:0.8:4]on the pore structure and specific surface area of Al_(2)O_(3) aerogels were studied.The results show that ethanol affects the pore structure of Al_(2)O_(3) aerogels by affecting the condensation probability of Al-OH troups,and acetic acid affects the pore structure of Al_(2)O_(3) aerogels by affecting the reaction rate;when n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:16:0.8:2,the Al_(2)O_(3) aerogel has a porous microstructure,and its internal pore diameters is generally smaller than the average free path of air molecules,showing excellent thermal insulation characteristics,low density of 0.20 g·cm^(-3),and the specific surface areas of 458,102,and 51 m^(2)·g^(-1) at 25,1000,and 1200℃,respectively.展开更多
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages...Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages,which hampers effective communication for non-standard language people.Here,we prepare an ultralight Ti_(3)C_(2)T_(x)MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 k Pa,rapid response/recovery time,and low hysteresis(13.69%).The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference,allowing for accurate recognition of six dialects(96.2%accuracy)and seven different words(96.6%accuracy)with the assistance of convolutional neural networks.This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
TiO2/SiO2 aerogels with different molar ratio of SiO2/TiO2 were prepared via non-supercritical method using tetrabutyl titanate and silica sols as raw materials. The samples were characterized by TEM, SEM, BET, IR, XR...TiO2/SiO2 aerogels with different molar ratio of SiO2/TiO2 were prepared via non-supercritical method using tetrabutyl titanate and silica sols as raw materials. The samples were characterized by TEM, SEM, BET, IR, XRD and so on. The results indicate that the BET surface area of TiO2/SiO2 aerogels calcined at 550℃ which consisted of anatase structure of TiO2 with narrow distribution pores of 5-25 nm is as high as 357.89 m2·g-1. For the photocatalytic degradation of pyridine, the catalytic activities of TiO2/SiO2 aerogels are much higher than that of TiO2 powder. The photocatalytic activity of TiO2/SiO2 aerogels calcined at 800℃ is the optimum. The higher the content of SiO2, the higher the photocatalytic activity of TiO2/SiO2 aerogels. The cost for preparation of the aerogels is greatly reduced by using non-supercritical drying method, and the aerogels are hopefully applied in the treatment of industrial waste water such as coking effluent treatment.展开更多
Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for ...Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for applications in extreme environments,however,the integration of multiple functions in their preparation is extremely challenging.To tackle these challenges,we fabricated a multifunctional SiC@SiO_(2) nanofiber aerogel(SiC@SiO_(2) NFA)with a threedimensional(3D)porous cross-linked structure through a simple chemical vapor deposition method and subsequent heat-treatment process.The as-prepared SiC@SiO_(2) NFA exhibits an ultralow density(~11 mg cm^(-3)),ultra-elastic,fatigue-resistant and refractory performance,high temperature thermal stability,thermal insulation properties,and significant strain-dependent piezoresistive sensing behavior.Furthermore,the SiC@SiO_(2) NFA shows a superior electromagnetic wave absorption performance with a minimum refection loss(RL_(min))value of-50.36 d B and a maximum effective absorption bandwidth(EAB_(max))of 8.6 GHz.The successful preparation of this multifunctional aerogel material provides a promising prospect for the design and fabrication of the cutting-edge ceramic materials.展开更多
The hydrophobic SiO2 aerogels were prepared by in-situ polymerization sol-gel method and supercritical drying of ethanol method with tetraethylorthosilicate(TEOS) as silica source, methyl triethoxysilane (MTMS) as...The hydrophobic SiO2 aerogels were prepared by in-situ polymerization sol-gel method and supercritical drying of ethanol method with tetraethylorthosilicate(TEOS) as silica source, methyl triethoxysilane (MTMS) as modifier, ethanol as solvent. Moreover, the structure and adsorption property of SiO2 aerogels were also studied. As results, the surface area of SiO2 aerogels was 863.59 m2/g, the pore volume was 3.57 cm3/g, and the contact angle was 150 °. Adsorption intensity of silica aerogels for organic liquid (alkanes, benzene compounds, and nitro-compounds) is bigger than that of activated carbon. The mass of the liquid absorbed increased linearly with the surface tension of the liquid. The lower surface tension and boiling point are, the shorter desorption time is. After regenerating 10 times, nitromethane regeneration rate remain the same, and almost more than 94%. So SiO2 aerogels have good absorption and regeneration property.展开更多
One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal charact...One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal characteristics.Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures,manageable dimensions,and modifiable properties,which hold great potential in many cutting-edge applications including aerospace,nanodevice,and energy.In this review,substantial advances in the structural design,controllable synthesis,and multifunctional applications of electrospun SNFs are highlighted.We begin with a brief introduction to the fundamental principles,available raw materials,and typical apparatus of electrospun SNFs.We then discuss the strategies for preparing SNFs with diverse structures in detail,especially stressing the newly emerging three-dimensional SiO_(2) nanofibrous aerogels.We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement.In addition,we showcase recent applications enabled by electrospun SNFs,with particular emphasis on physical protection,health care and water treatment.In the end,we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.展开更多
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr...Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.展开更多
Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Al...Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.展开更多
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)...The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.展开更多
A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-amino...A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.展开更多
Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the op...Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.展开更多
The shuttling diffusion of polysulfides is a bottleneck that seriously limits the performance of Li-S batteries.Purposeful construction of sulfur cathodes with reliable trapping ability of polysulfides is the key to o...The shuttling diffusion of polysulfides is a bottleneck that seriously limits the performance of Li-S batteries.Purposeful construction of sulfur cathodes with reliable trapping ability of polysulfides is the key to overcome such limitation.Herein,a hierarchical porous architecture,i.e.,Co(OH)_(2)sheets bonded Ti_3C_(2)T_x MXene aerogel(Co(OH)_(2)/MXA),is constructed via a facile selfassembled approach and used as an efficient free-standing polysulfides reservoir.The interconnected three-dimensional(3D)porous network with void space and strong interfacial interaction not only enables high sulfur loading but facilitates fast ion and electron transport.Experimental and theoretical results confirm the hetero-framework exhibits outstanding immobilization and conversion ability for polysulfides due to its polar surface and bifunctional catalytic activities toward both formation and decomposition of Li2S.The optimized Co(OH)_(2)/MXA cathode delivers excellent rate capability(407 mAh·g^(-1)at 5C)with a sulfur loading of 2.7 mg·cm^(-2),and ultra-stable cycling performance as an extremely small capacity decay of~0.005%per cycle within 1700 cycles at 1C is achieved with a high sulfur loading of 6.7 mg·cm^(-2).More significantly,our design structural/componential methodology here promises the MXene-based aerogel electrodes for LiS batteries and beyond.展开更多
An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surf...An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.展开更多
基金supported by the Natural Science Foundation of Shandong Province(ZR2021ME124,ZR2023ME033)Science-Education-Industry Integration Innovation Pilot Project of Qilu University of Technology(2024GH09)+2 种基金Innovation Capacity Improvement Project of Small and Medium-Sized Technology-Based Enterprise of Shandong Province(2023TSGC0706,2022TSGC1022)Technological Innovation Projects of Shandong Province(202350700179,202351600213)Science and technology plan project of Shandong Railway Investment Holding Group(TTKJ2023-01)。
文摘It is well known that adsorbent material is the key to determine the CO_(2)adsorption performance.Herein,ZIF-8 derived porous carbon(ZIF-8-C)is anchored into the framework of a novel composite aerogel(ZCPx),which utilizes chitosan(CS)and polyvinyl alcohol(PVA)as raw materials.By controlling the ratio of ZIF-8-C,the developed hierarchical porous structures combine the advantages of micropores,mesopores,and macropores.Besides,the ligand material of ZIF-8-C and the amino group from CS are two sources of the high nitrogen content of ZCPx.The optimized sample ZCP4 shows a high nitrogen content of 6.78%,which can create more active centers and supply basic sites,thereby enhancing the CO_(2)adsorption capacity.Moreover,ZC P4 composite aerogel presents a CO_(2)adsorption capacity of2.26 mmol·g^(-1)(298 K,0.1 MPa)and CO_(2)/N_(2)selectivity(S_(CO_(2))/N_(2))can reach 20.02,and the dynamic breakthrough experiment is performed to confirm the feasibility of CO_(2)/N_(2)actual separation performance,proving that the composite aerogel is potential candidates for CO_(2)adsorption.
基金Funded by by the Wuhan Science and Technology Project(No.2024010702030141)。
文摘A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has significantly improved oxidation resistance.When the addition amount of Ti_(3)SiC_(2)is 75%,the carbonization volume shrinkage rate of the composite after aerobic static combustion is only 5.95%.At the same time,the LAR and MAR after 30 seconds of oxyacetylene ablation under a heat flux density of 1.5 MW/m2 are 0.0307 mm/s and 0.0149 g/s,respectively.The compressive strength after aerobic static combustion at 1000℃is up to 20.43%of that before aerobic static combustion,which is 1.99 times that of the unfilled material,significantly improving the high-temperature mechanical properties of the composite.
文摘To optimize the preparation of alumina aerogels,the sol-gel method was combined with supercritical drying,using aluminum isopropoxide(AIP)as the precursor,ethanol(EtOH)as the solvent,and acetic acid(HAc)as the catalyst.The effects of the ethanol addition[n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:8:0.8:2,1:12:0.8:2,1:16:0.8:2,and 1:20:0.8:2]and acetic acid addition[n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:16:0.8:1,1:16:0.8:2,1:16:0.8:3,and 1:16:0.8:4]on the pore structure and specific surface area of Al_(2)O_(3) aerogels were studied.The results show that ethanol affects the pore structure of Al_(2)O_(3) aerogels by affecting the condensation probability of Al-OH troups,and acetic acid affects the pore structure of Al_(2)O_(3) aerogels by affecting the reaction rate;when n(AIP):n(EtOH):n(H_(2)O):n(HAc)=1:16:0.8:2,the Al_(2)O_(3) aerogel has a porous microstructure,and its internal pore diameters is generally smaller than the average free path of air molecules,showing excellent thermal insulation characteristics,low density of 0.20 g·cm^(-3),and the specific surface areas of 458,102,and 51 m^(2)·g^(-1) at 25,1000,and 1200℃,respectively.
基金supported by the National Nature Science Foundation of China(No.62122030,62333008,62371205,52103208)National Key Research and Development Program of China(No.2021YFB3201300)+1 种基金Application and Basic Research of Jilin Province(20130102010 JC)Fundamental Research Funds for the Central Universities,Jilin Provincial Science and Technology Development Program(20230101072JC)。
文摘Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages,which hampers effective communication for non-standard language people.Here,we prepare an ultralight Ti_(3)C_(2)T_(x)MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 k Pa,rapid response/recovery time,and low hysteresis(13.69%).The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference,allowing for accurate recognition of six dialects(96.2%accuracy)and seven different words(96.6%accuracy)with the assistance of convolutional neural networks.This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.
基金Supported by the National Natural Science Foundation of China (No. 20473057)Development Foundation of Science and Technology of Shanghai (No. 0352nm094).
文摘TiO2/SiO2 aerogels with different molar ratio of SiO2/TiO2 were prepared via non-supercritical method using tetrabutyl titanate and silica sols as raw materials. The samples were characterized by TEM, SEM, BET, IR, XRD and so on. The results indicate that the BET surface area of TiO2/SiO2 aerogels calcined at 550℃ which consisted of anatase structure of TiO2 with narrow distribution pores of 5-25 nm is as high as 357.89 m2·g-1. For the photocatalytic degradation of pyridine, the catalytic activities of TiO2/SiO2 aerogels are much higher than that of TiO2 powder. The photocatalytic activity of TiO2/SiO2 aerogels calcined at 800℃ is the optimum. The higher the content of SiO2, the higher the photocatalytic activity of TiO2/SiO2 aerogels. The cost for preparation of the aerogels is greatly reduced by using non-supercritical drying method, and the aerogels are hopefully applied in the treatment of industrial waste water such as coking effluent treatment.
基金financially supported by the National Natural Science Foundation of China(No.U2004177 and U21A2064)Outstanding Youth Fund of Henan Province(No.212300410081)+1 种基金Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province(22HASTIT001)The Research and Entrepreneurship Start-up Projects for Overseas Returned Talents。
文摘Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for applications in extreme environments,however,the integration of multiple functions in their preparation is extremely challenging.To tackle these challenges,we fabricated a multifunctional SiC@SiO_(2) nanofiber aerogel(SiC@SiO_(2) NFA)with a threedimensional(3D)porous cross-linked structure through a simple chemical vapor deposition method and subsequent heat-treatment process.The as-prepared SiC@SiO_(2) NFA exhibits an ultralow density(~11 mg cm^(-3)),ultra-elastic,fatigue-resistant and refractory performance,high temperature thermal stability,thermal insulation properties,and significant strain-dependent piezoresistive sensing behavior.Furthermore,the SiC@SiO_(2) NFA shows a superior electromagnetic wave absorption performance with a minimum refection loss(RL_(min))value of-50.36 d B and a maximum effective absorption bandwidth(EAB_(max))of 8.6 GHz.The successful preparation of this multifunctional aerogel material provides a promising prospect for the design and fabrication of the cutting-edge ceramic materials.
基金Funded by the National Natural Science Foundation of China (No. 10976013)the Science Project of Ministry of Housing and Urban-Rural Development(No. 2011-K7-16)+1 种基金the State Key Laboratory of Materials-Oriented Chemical Engineeringthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The hydrophobic SiO2 aerogels were prepared by in-situ polymerization sol-gel method and supercritical drying of ethanol method with tetraethylorthosilicate(TEOS) as silica source, methyl triethoxysilane (MTMS) as modifier, ethanol as solvent. Moreover, the structure and adsorption property of SiO2 aerogels were also studied. As results, the surface area of SiO2 aerogels was 863.59 m2/g, the pore volume was 3.57 cm3/g, and the contact angle was 150 °. Adsorption intensity of silica aerogels for organic liquid (alkanes, benzene compounds, and nitro-compounds) is bigger than that of activated carbon. The mass of the liquid absorbed increased linearly with the surface tension of the liquid. The lower surface tension and boiling point are, the shorter desorption time is. After regenerating 10 times, nitromethane regeneration rate remain the same, and almost more than 94%. So SiO2 aerogels have good absorption and regeneration property.
基金This work was supported by the National Natural Science Foundation of China(Nos.21961132024,51925302,and 52173055)the Ministry of Science and Technology of China(No.2021YFE0105100)the Fundamental Research Funds for the Central Universities and the DHU Distinguished Young Professor Program(No.LZA2020001).
文摘One-dimensional(1D)SiO_(2) nanofibers(SNFs),one of the most popular inorganic nanomaterials,have aroused widespread attention because of their excellent chemical stability,as well as unique optical and thermal characteristics.Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures,manageable dimensions,and modifiable properties,which hold great potential in many cutting-edge applications including aerospace,nanodevice,and energy.In this review,substantial advances in the structural design,controllable synthesis,and multifunctional applications of electrospun SNFs are highlighted.We begin with a brief introduction to the fundamental principles,available raw materials,and typical apparatus of electrospun SNFs.We then discuss the strategies for preparing SNFs with diverse structures in detail,especially stressing the newly emerging three-dimensional SiO_(2) nanofibrous aerogels.We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement.In addition,we showcase recent applications enabled by electrospun SNFs,with particular emphasis on physical protection,health care and water treatment.In the end,we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.
基金supported by the China Postdoctoral Science Foundation(No.2021MD703944)the Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414211808)+1 种基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)the National Natural Science Foundation of China(No.21776053)。
文摘Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.
文摘Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52203261)Natural Science Foundation of Jiangsu Province(BK20210474)the project of research on the industrial application of"controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(N0.CJGJZD20210408092400002).
文摘The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.
基金supported by the National Natural Science Foundation of China (21603125)Science-Education-Industry Integration Innovation Pilot Project of Qilu University of Technology (2020KJC-GH13)+2 种基金International Cooperation Project of Shandong Academy of Sciences (2019GHPY09)Natural Science Foundation of Shandong Province (ZR2019BEM025)Young doctor Cooperation Foundation of Qilu University of Technology (Shandong Academy of Sciences) (2019BSHZ0016)。
文摘A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.
基金Project supported jointly by the Foundation of He'nan Educational Committee(15A150071)
文摘Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218 and U22A20145)Jinan Independent Innovative Team(No.2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(No.ZR2021ZD05)the Science and Technology Program of University of Jinan(Nos.XKY2119 and XKY2304)。
文摘The shuttling diffusion of polysulfides is a bottleneck that seriously limits the performance of Li-S batteries.Purposeful construction of sulfur cathodes with reliable trapping ability of polysulfides is the key to overcome such limitation.Herein,a hierarchical porous architecture,i.e.,Co(OH)_(2)sheets bonded Ti_3C_(2)T_x MXene aerogel(Co(OH)_(2)/MXA),is constructed via a facile selfassembled approach and used as an efficient free-standing polysulfides reservoir.The interconnected three-dimensional(3D)porous network with void space and strong interfacial interaction not only enables high sulfur loading but facilitates fast ion and electron transport.Experimental and theoretical results confirm the hetero-framework exhibits outstanding immobilization and conversion ability for polysulfides due to its polar surface and bifunctional catalytic activities toward both formation and decomposition of Li2S.The optimized Co(OH)_(2)/MXA cathode delivers excellent rate capability(407 mAh·g^(-1)at 5C)with a sulfur loading of 2.7 mg·cm^(-2),and ultra-stable cycling performance as an extremely small capacity decay of~0.005%per cycle within 1700 cycles at 1C is achieved with a high sulfur loading of 6.7 mg·cm^(-2).More significantly,our design structural/componential methodology here promises the MXene-based aerogel electrodes for LiS batteries and beyond.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51278073,51308079 and 51408073)
文摘An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.