期刊文献+
共找到541,703篇文章
< 1 2 250 >
每页显示 20 50 100
基于主题条件CNN-BiLSTM的旋律自动生成方法
1
作者 曹西征 张航 李伟 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期135-142,共8页
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲... 为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型. 展开更多
关键词 音乐生成 自动作曲 cnn-bilstm 旋律主题提取 聚类
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
2
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
基于动力指纹与GTO-1D CNN-BiLSTM模型的梁桥损伤诊断
3
作者 项长生 赵华 +2 位作者 苏天涛 刘屺阳 李峰 《长安大学学报(自然科学版)》 北大核心 2025年第3期90-101,共12页
针对服役梁桥易受材料和环境等因素影响出现易损性问题,以一座三跨连续梁桥为研究对象,提出一种基于灰关联广义比例柔度曲率差(GMGPFCD-A)构建的动力指纹和人工大猩猩群体优化算法(GTO)-一维卷积神经网络(1D CNN)-双向长短期记忆网络(Bi... 针对服役梁桥易受材料和环境等因素影响出现易损性问题,以一座三跨连续梁桥为研究对象,提出一种基于灰关联广义比例柔度曲率差(GMGPFCD-A)构建的动力指纹和人工大猩猩群体优化算法(GTO)-一维卷积神经网络(1D CNN)-双向长短期记忆网络(BiLSTM)预测模型的梁桥分级损伤识别方法;该方法以低阶模态参数构建的广义柔度矩阵和比例柔度矩阵为基础,结合灰色关联分析(GRA),构建动力指纹识别结构的损伤位置,并将该指标输入到1D CNN-BiLSTM损伤预测模型中进行量化分析,引入GTO优化预测模型的超参数以提高其对结构损伤程度的预测性能。研究结果表明:该模型不仅能在无需测得外部环境激励的情况下准确识别结构的损伤位置,并且在噪声水平10%以内具有一定的抗噪性;经GTO优化后的预测模型对识别出的损伤部位的损伤程度准确率达93.548%;提出模型收敛速度更快、更稳定,且具有较高预测准确率和较强鲁棒性。 展开更多
关键词 桥梁工程 损伤识别 广义柔度矩阵 比例柔度矩阵 灰色关联分析 1D cnn-bilstm 人工大猩猩群体优化算法
原文传递
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:5
4
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
改进GJO优化CNN-BiLSTM的热负荷预测模型 被引量:6
5
作者 白宇 薛贵军 +1 位作者 谢文举 史彩娟 《中国测试》 北大核心 2025年第4期82-90,共9页
合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影... 合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。 展开更多
关键词 供热负荷预测 一次网 改进金豺优化算法 cnn-bilstm网络 超参数寻优 预测精度
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
6
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测 被引量:1
7
作者 张开伟 文中 +2 位作者 杨生鹏 胡梓涵 丁剑 《可再生能源》 北大核心 2025年第2期217-224,共8页
为提升风电机组超短期功率预测的准确性,文章提出了一种考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测模型。首先,综合考虑环境因素与风电机组各子部件的相互作用对风电机组输出功率的影响,将风电机组各个子部件正... 为提升风电机组超短期功率预测的准确性,文章提出了一种考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测模型。首先,综合考虑环境因素与风电机组各子部件的相互作用对风电机组输出功率的影响,将风电机组各个子部件正常运行时的相对误差作为监测指标的劣化度;然后,采用模糊综合评价法对风电机组健康状况进行评估,根据评估结果对其历史数据集进行健康状况划分;最后,采用双重注意力机制CNN-BiLSTM模型对分类后的数据集构建超短期功率预测模型。实验结果表明,在风电机组功率预测过程中,相较于未考虑机组健康状况,考虑机组健康状况的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了17.3%和20.5%。 展开更多
关键词 超短期 功率预测 健康状况 双重注意力机制 cnn-bilstm模型
在线阅读 下载PDF
基于CNN-BiLSTM-Attention的深基坑变形预测方法 被引量:2
8
作者 孟飞 郑卓然 +2 位作者 黄文聪 岳学军 张伟锋 《地下空间与工程学报》 北大核心 2025年第S1期87-94,共8页
深基坑变形的准确预测一直是基坑工程面临的关键问题之一,地下空间的复杂性和基坑施工环境的多样性使得传统的预测方法在应对这一问题时显得力不从心。为了提高深基坑变形预测的精准度,提出一种结合卷积神经网络(CNN)、双向长短期记忆... 深基坑变形的准确预测一直是基坑工程面临的关键问题之一,地下空间的复杂性和基坑施工环境的多样性使得传统的预测方法在应对这一问题时显得力不从心。为了提高深基坑变形预测的精准度,提出一种结合卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和注意力机制(Attention)的深基坑变形预测模型。通过构建时空网格,利用卷积神经网络提取基坑变形的空间特征,结合双向长短时记忆网络对时序特征进行建模,引入注意力机制提高模型对关键时空位置的关注度,最后通过全连接层整合特征,输出预测的监测值。基于广州市某人才公寓深基坑的监测数据进行工程案例验证,通过消融试验和对比试验结果表明,所提方法在深基坑变形预测中精度较高。 展开更多
关键词 深基坑 变形预测 卷积神经网络(CNN) 双向长短期记忆神经网络(BiLSTM) 注意力机制
原文传递
基于IBWO-CNN-BiLSTM-Attention的机床刀具磨损预测模型
9
作者 崔业梅 杨焕峥 +1 位作者 薛洪惠 徐玲 《机床与液压》 北大核心 2025年第8期72-78,共7页
为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空... 为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空间和时间特征,引入注意力机制(Attention)提高模型对关键信息的关注度。提出一种改进的白鲸优化算法(IBWO)优化模型参数和迭代次数,结合种群混沌映射初始化、准反向学习和萤火虫扰动策略,经CEC2005函数测试,该算法收敛速度和寻优精度明显优于传统BWO等对比算法。将该模型与CNN-BiLSTM-Attention模型、BWO-CNN-BiLSTM-Attention模型进行对比。结果表明:该模型在机床刀具磨损预测方面具有更高的准确性和可靠性。最后,在STM32H7单片机设备中部署了“剪枝”模型,并验证了“剪枝”模型在嵌入式设备中运行的可行性。 展开更多
关键词 机床刀具 磨损预测 改进的白鲸优化算法(IBWO) 双向长短时记忆网络(BiLSTM) 卷积神经网络(CNN)
在线阅读 下载PDF
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
10
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES network
原文传递
以霜冰优化算法优化CNN-BiLSTM-Attention的参考蒸散量估算
11
作者 付桐林 金晶 《中国沙漠》 北大核心 2025年第3期302-312,共11页
有限气象参数条件下借助于深度学习实现蒸散量的准确估算对干旱区有限水资源的高效利用和管理具有重要意义。当前基于混合深度学习模型CNN-Bi LSTM-Attention的蒸散发估算忽视了参数优化,导致估算精度难以契合实际应用需求。本文提出了... 有限气象参数条件下借助于深度学习实现蒸散量的准确估算对干旱区有限水资源的高效利用和管理具有重要意义。当前基于混合深度学习模型CNN-Bi LSTM-Attention的蒸散发估算忽视了参数优化,导致估算精度难以契合实际应用需求。本文提出了一种新的霜冰优化算法(RIME)优化CNN-Bi LSTM-Attention的超参数的混合模型RIME-CNN-Bi LSTM-Attention,实现了有限气象参数条件下临泽县参考蒸散量(ET_(0))的准确预测。与CNN-Bi LSTM-Attention相比,混合模型RIME-CNN-Bi LSTM-Attention的平均绝对百分比误差(MAPE)从14.56%下降到14.09%,可决系数从0.8654上升到0.8930。此外,数值结果表明混合模型RIME-CNN-Bi LSTM-Attention的模型性能优于分别采用哈里斯鹰优化算法(HHO)、鱼鹰优化算法(OOA)、北方苍鹰算法(NGO)对CNN-Bi LSTM-Attention进行优化的混合模型HHO-CNN-Bi LSTM-Attention、OOA-CNN-Bi LSTM-Attention、NGO-CNN-Bi LSTM-Attention,意味着所构建混合模型RIME-CNN-Bi LSTM-Attention具有更加稳健的模型性能和更高的计算精度,能够实现研究区域ET_(0)的准确估算。 展开更多
关键词 参考蒸散量 霜冰优化算法 卷积神经网络 双向长短期记忆网络 注意力机制
原文传递
基于HPO优化ECA-CNN-BiLSTM的变压器运行状态分类与识别方法 被引量:1
12
作者 邹德旭 毛雅婷 +5 位作者 权浩 周涛 彭庆军 洪志湖 代维菊 王山 《南京信息工程大学学报》 北大核心 2025年第3期301-314,共14页
变压器运行状态分类与准确识别对于变压器稳定运行和电力系统安全供电至关重要,此类研究目前还存在对变压器负荷数据的关注使用较少、机理模型复杂度高以及油温等数据和过负荷状态并不明确对应等问题.因此,本文提出一种改进的混合模型,... 变压器运行状态分类与准确识别对于变压器稳定运行和电力系统安全供电至关重要,此类研究目前还存在对变压器负荷数据的关注使用较少、机理模型复杂度高以及油温等数据和过负荷状态并不明确对应等问题.因此,本文提出一种改进的混合模型,结合了猎人猎物优化(Hunter-Prey Optimization,HPO)算法和高效通道注意力(Efficient Channel Attention,ECA)模块,应用于卷积神经网络(Convolutional Neural Network,CNN)和双向长短时记忆(Bidirectional Long Short-Term Memory,BiLSTM)神经网络,用于变压器运行状态分类和过负荷故障识别.选取某主变包含9种变压器负荷相关特征的数据作为样本,通过K-Means++聚类和变压器正常周期性负荷分析选定负荷状态类别,基于HPO优化混合模型参数,提高模型的性能和泛化能力.通过对变压器负荷数据进行预处理和特征提取,使用优化后的模型进行负荷阶段的准确识别.实验结果表明,所提出方法的识别准确率可达99.24%,在变压器运行状态的分类和识别上取得了良好的效果. 展开更多
关键词 电力变压器 状态分类识别 高效通道注意力 卷积神经网络 双向长短时记忆
在线阅读 下载PDF
基于注意力机制的CNN-BiLSTM过闸流量预测模型
13
作者 何立新 沈正华 +1 位作者 张峥 雷晓辉 《水电能源科学》 北大核心 2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制... 在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。 展开更多
关键词 过闸流量预测 BiLSTM 注意力机制 神经网络
原文传递
基于IEA-T和CNN-BiLSTM-SimAM的锂离子电池健康状态估计
14
作者 张朝龙 刘梦玲 +4 位作者 张俣峰 陈阳 华国庆 谢敏 江乐阳 《武汉大学学报(理学版)》 北大核心 2025年第3期385-394,共10页
为提升锂离子电池健康状态(SOH)估计的准确性,克服现有估计方法无法全面刻画电池衰退细节的局限,提出一种融合距离交并比损失函数(DIoUloss)与无参注意力机制(SimAM)的多特征卷积神经网络-双向长短期记忆网络(CNNBiLSTM)的锂电池SOH估... 为提升锂离子电池健康状态(SOH)估计的准确性,克服现有估计方法无法全面刻画电池衰退细节的局限,提出一种融合距离交并比损失函数(DIoUloss)与无参注意力机制(SimAM)的多特征卷积神经网络-双向长短期记忆网络(CNNBiLSTM)的锂电池SOH估计方法。该方法将锂离子电池增量能量面积(IEA)和充电时长(T)组成IEA-T特征用于电池SOH的估计,将DIoUloss函数和SimAM机制融合于CNN-BiLSTM模型,建立CNN-BiLSTM-SimAM锂离子电池SOH估计模型。对锂离子电池的循环老化实验进行测试,相比起GRU、SVR、CNN-LSTM和CNN-BiLSTM等方法,本文提出的方法能更有效地表征电池健康的衰退细节,决定系数高于0.96,均方根误差低于0.020,表现出良好的准确性和效率。 展开更多
关键词 锂离子电池 健康状态(SOH) 卷积神经网络-双向长短期记忆网络(cnn-bilstm) 距离交并比损失(DIoUloss)函数 无参注意力机制(SimAM) 增量能量
原文传递
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
15
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
基于自注意力机制的CNN-BiLSTM生鲜物流服务质量影响因素
16
作者 倪昭鑫 舒帆 《科学技术与工程》 北大核心 2025年第16期6821-6830,共10页
为探究影响顾客对生鲜物流服务质量评价的因素,提出并建立基于在线评论情感分析与LDA(latent Dirichlet allocation)相结合的物流服务质量评价模型,构建一种融合多头自注意力机制和双向长短期记忆网络(bidirectional long short-term me... 为探究影响顾客对生鲜物流服务质量评价的因素,提出并建立基于在线评论情感分析与LDA(latent Dirichlet allocation)相结合的物流服务质量评价模型,构建一种融合多头自注意力机制和双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)的卷积神经网络(convolutional neural network,CNN)模型(CNN-BiLSTM-Attention)对在线评论进行情感分析,并针对分类后的正负面评价进行LDA主题建模,挖掘顾客对生鲜产品物流服务需求的关注重点,得出影响生鲜物流服务质量评价的关键因素。通过Python编程实现了基于CNN-BiLSTM-Attention的情感分析,并与支持向量机(SVM)、CNN、BiLSTM和CNN-BiLSTM对在线评论进行情感分析的结果进行比较,对比结果分析发现,相较于其他模型的分类结果,CNN-BiLSTM-Attention模型在准确率、精确度、召回率、F1等指标上均较优,有效提高了文本情感分类的准确率。研究成果表明,基于在线评论数据对生鲜电商物流服务质量的影响因素进行研究,可帮助电商企业更好地从消费者需求出发提升物流效率、改善服务质量。 展开更多
关键词 在线评论 物流服务质量 自注意力机制 双向长短期记忆网络(BiLSTM) 卷积神经网络(CNN) 情感分析
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:2
17
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于Hyperband-CNN-BiLSTM模型的车辆油耗预测方法 被引量:1
18
作者 吐尔逊·买买提 孙慧 刘亚楼 《科学技术与工程》 北大核心 2025年第9期3896-3904,共9页
为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网... 为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。 展开更多
关键词 Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 组合模型
在线阅读 下载PDF
基于CNN-BiLSTM的网络入侵检测模型
19
作者 郝杰 侯天浩 +2 位作者 张正 柳亚男 胡苇 《金陵科技学院学报》 2025年第2期9-16,共8页
网络入侵检测系统是保障网络安全的核心技术之一。针对传统入侵检测方法在复杂网络攻击场景下特征提取不足和检测率低的问题,提出了一种基于CNN-BiLSTM的网络入侵检测模型。该模型通过卷积神经网络提取网络流量数据的局部空间特征,并结... 网络入侵检测系统是保障网络安全的核心技术之一。针对传统入侵检测方法在复杂网络攻击场景下特征提取不足和检测率低的问题,提出了一种基于CNN-BiLSTM的网络入侵检测模型。该模型通过卷积神经网络提取网络流量数据的局部空间特征,并结合双向长短期记忆网络捕捉流量序列中的长短期依赖关系,提取网络流量数据的时间特征,能够有效应对复杂网络攻击行为。同时,使用EQL v2方法计算每个类别的权重,并将其使用在损失计算过程中,从而优化了模型在数据集类不平衡问题上的表现。NSL-KDD和UNSW-NB15数据集的测试结果表明,CNN-BiLSTM模型在这两个数据集上多分类的平均准确率分别达到99.65%和86.70%,此外,模型对样本量较少的攻击类型也表现出良好的检测能力。 展开更多
关键词 cnn-bilstm 网络入侵检测模型 类不平衡 双向长短期记忆网络
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
20
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部