期刊文献+
共找到908,537篇文章
< 1 2 250 >
每页显示 20 50 100
基于主题条件CNN-BiLSTM的旋律自动生成方法
1
作者 曹西征 张航 李伟 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期135-142,共8页
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲... 为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型. 展开更多
关键词 音乐生成 自动作曲 cnn-bilstm 旋律主题提取 聚类
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
2
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于动力指纹与GTO-1D CNN-BiLSTM模型的梁桥损伤诊断
3
作者 项长生 赵华 +2 位作者 苏天涛 刘屺阳 李峰 《长安大学学报(自然科学版)》 北大核心 2025年第3期90-101,共12页
针对服役梁桥易受材料和环境等因素影响出现易损性问题,以一座三跨连续梁桥为研究对象,提出一种基于灰关联广义比例柔度曲率差(GMGPFCD-A)构建的动力指纹和人工大猩猩群体优化算法(GTO)-一维卷积神经网络(1D CNN)-双向长短期记忆网络(Bi... 针对服役梁桥易受材料和环境等因素影响出现易损性问题,以一座三跨连续梁桥为研究对象,提出一种基于灰关联广义比例柔度曲率差(GMGPFCD-A)构建的动力指纹和人工大猩猩群体优化算法(GTO)-一维卷积神经网络(1D CNN)-双向长短期记忆网络(BiLSTM)预测模型的梁桥分级损伤识别方法;该方法以低阶模态参数构建的广义柔度矩阵和比例柔度矩阵为基础,结合灰色关联分析(GRA),构建动力指纹识别结构的损伤位置,并将该指标输入到1D CNN-BiLSTM损伤预测模型中进行量化分析,引入GTO优化预测模型的超参数以提高其对结构损伤程度的预测性能。研究结果表明:该模型不仅能在无需测得外部环境激励的情况下准确识别结构的损伤位置,并且在噪声水平10%以内具有一定的抗噪性;经GTO优化后的预测模型对识别出的损伤部位的损伤程度准确率达93.548%;提出模型收敛速度更快、更稳定,且具有较高预测准确率和较强鲁棒性。 展开更多
关键词 桥梁工程 损伤识别 广义柔度矩阵 比例柔度矩阵 灰色关联分析 1D cnn-bilstm 人工大猩猩群体优化算法
原文传递
基于波动特征提取的CNN-BiLSTM光伏功率短期预测 被引量:1
4
作者 熊鹏飞 张赛 王宪军 《热能动力工程》 北大核心 2025年第7期180-189,共10页
针对光伏发电的随机性、不确定性引起的输电并网不平稳问题,需考虑光伏功率的波动特性对光伏预测的影响。结合光伏波动参数与分形理论,提取光伏波动特征,并将该特征存储于LSTM模型的记忆单元中。采用K-means聚类算法划分出3种天气类型,... 针对光伏发电的随机性、不确定性引起的输电并网不平稳问题,需考虑光伏功率的波动特性对光伏预测的影响。结合光伏波动参数与分形理论,提取光伏波动特征,并将该特征存储于LSTM模型的记忆单元中。采用K-means聚类算法划分出3种天气类型,分别以未提取特征的CNN、LSTM、BiLSTM单一模型以及CNN-LSTM、CNN-BiLSTM组合模型作为对比模型,进而与提取波动特征后的对应预测模型进行对比。以中国西南某地区光伏发电站为案例进行研究。结果表明:提取波动特征后的CNN-BiLSTM模型在训练时间上比未提取时缩短30.13%;综合考虑3种天气的预测效果,已提取特征的模型与未提取时相比,MAE和RMSE分别至少下降了33.81%和42.66%,说明提出的波动特征提取方法可以提高光伏功率预测的精度和效率;CNN-BiLSTM模型的预测结果相比单一模型更接近真实值,MAE和RMSE分别至少降低4.27%和3.38%,表明CNN-BiLSTM模型具备更高的预测精度。 展开更多
关键词 光伏短期功率 cnn-bilstm 分形理论 波动特征 预测模型
原文传递
考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测 被引量:1
5
作者 张开伟 文中 +2 位作者 杨生鹏 胡梓涵 丁剑 《可再生能源》 北大核心 2025年第2期217-224,共8页
为提升风电机组超短期功率预测的准确性,文章提出了一种考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测模型。首先,综合考虑环境因素与风电机组各子部件的相互作用对风电机组输出功率的影响,将风电机组各个子部件正... 为提升风电机组超短期功率预测的准确性,文章提出了一种考虑风电机组健康状况与双重注意力机制CNN-BiLSTM的超短期功率预测模型。首先,综合考虑环境因素与风电机组各子部件的相互作用对风电机组输出功率的影响,将风电机组各个子部件正常运行时的相对误差作为监测指标的劣化度;然后,采用模糊综合评价法对风电机组健康状况进行评估,根据评估结果对其历史数据集进行健康状况划分;最后,采用双重注意力机制CNN-BiLSTM模型对分类后的数据集构建超短期功率预测模型。实验结果表明,在风电机组功率预测过程中,相较于未考虑机组健康状况,考虑机组健康状况的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了17.3%和20.5%。 展开更多
关键词 超短期 功率预测 健康状况 双重注意力机制 cnn-bilstm模型
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
6
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
改进GJO优化CNN-BiLSTM的热负荷预测模型 被引量:6
7
作者 白宇 薛贵军 +1 位作者 谢文举 史彩娟 《中国测试》 北大核心 2025年第4期82-90,共9页
合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影... 合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。 展开更多
关键词 供热负荷预测 一次网 改进金豺优化算法 cnn-bilstm网络 超参数寻优 预测精度
在线阅读 下载PDF
融合文本分析和CNN-BiLSTM模型的校园霸凌舆情分析——以邯郸初中生被害案为例 被引量:1
8
作者 黄金柱 杨云飞 +2 位作者 周丹萍 王淑影 王纯杰 《情报探索》 2025年第1期64-71,共8页
[目的/意义]校园霸凌是一种严重影响学生身心健康的现象,在教育领域和社会中引起了广泛关注。本文旨在深入研究校园霸凌事件,揭示公众对校园霸凌的态度和看法。[方法/过程]应用Python软件爬取公众对某校园霸凌热点事件的微博评论数据,... [目的/意义]校园霸凌是一种严重影响学生身心健康的现象,在教育领域和社会中引起了广泛关注。本文旨在深入研究校园霸凌事件,揭示公众对校园霸凌的态度和看法。[方法/过程]应用Python软件爬取公众对某校园霸凌热点事件的微博评论数据,使用文本分析和CNN-BiLSTM模型对该事件中民众的主要观点进行情感分析研究。[结果/结论]通过实例分析说明了该模型具有更好的预测准确率,并得到舆论关注的热点,提出舆论应对建议。 展开更多
关键词 教育舆情 校园霸凌 文本分析 情感分析 cnn-bilstm模型
在线阅读 下载PDF
基于CNN-BiLSTM-AM模型的玉米期货价格预测
9
作者 汪子文 叶勇 章豪 《佳木斯大学学报(自然科学版)》 2025年第7期13-16,共4页
针对传统玉米期货价格预测精度不足的问题,研究提出了一种结合CNN,BiLSTM和注意力机制(AM)的组合模型(CNN-BiLSTM-AM)。该模型利用CNN提取局部特征,BiLSTM捕捉双向时序依赖,AM动态加权关键信息,从而提升预测性能。基于2012—2023年多源... 针对传统玉米期货价格预测精度不足的问题,研究提出了一种结合CNN,BiLSTM和注意力机制(AM)的组合模型(CNN-BiLSTM-AM)。该模型利用CNN提取局部特征,BiLSTM捕捉双向时序依赖,AM动态加权关键信息,从而提升预测性能。基于2012—2023年多源数据的实验表明,该模型在1d~30d的预测中均优于基准模型,短期预测RMSE和MAPE较LSTM分别降低5.37%和9.11%,长期预测稳定性显著提高。该研究提供了更加精确的金融时序预测解决方案。 展开更多
关键词 价格预测 玉米期货 cnn-bilstm-AM模型
在线阅读 下载PDF
基于CNN-BiLSTM的网络入侵检测模型
10
作者 郝杰 侯天浩 +2 位作者 张正 柳亚男 胡苇 《金陵科技学院学报》 2025年第2期9-16,共8页
网络入侵检测系统是保障网络安全的核心技术之一。针对传统入侵检测方法在复杂网络攻击场景下特征提取不足和检测率低的问题,提出了一种基于CNN-BiLSTM的网络入侵检测模型。该模型通过卷积神经网络提取网络流量数据的局部空间特征,并结... 网络入侵检测系统是保障网络安全的核心技术之一。针对传统入侵检测方法在复杂网络攻击场景下特征提取不足和检测率低的问题,提出了一种基于CNN-BiLSTM的网络入侵检测模型。该模型通过卷积神经网络提取网络流量数据的局部空间特征,并结合双向长短期记忆网络捕捉流量序列中的长短期依赖关系,提取网络流量数据的时间特征,能够有效应对复杂网络攻击行为。同时,使用EQL v2方法计算每个类别的权重,并将其使用在损失计算过程中,从而优化了模型在数据集类不平衡问题上的表现。NSL-KDD和UNSW-NB15数据集的测试结果表明,CNN-BiLSTM模型在这两个数据集上多分类的平均准确率分别达到99.65%和86.70%,此外,模型对样本量较少的攻击类型也表现出良好的检测能力。 展开更多
关键词 cnn-bilstm 网络入侵检测模型 类不平衡 双向长短期记忆网络
在线阅读 下载PDF
基于CNN-BiLSTM和多目标函数优化的省级光伏日内保障出力预测
11
作者 王莲 简子淋 +3 位作者 张晓斌 夏越 王铮 俞轩 《高电压技术》 北大核心 2025年第9期4846-4855,共10页
目前,光伏功率预测方法均是以追求整体预测精度最高为优化目标,导致部分时段的预测功率高于实际功率。基于高估的预测功率制定的发电调度计划可能无法满足实际电力需求,对电力系统保供产生不利影响。针对此问题,提出了一种以保安全为目... 目前,光伏功率预测方法均是以追求整体预测精度最高为优化目标,导致部分时段的预测功率高于实际功率。基于高估的预测功率制定的发电调度计划可能无法满足实际电力需求,对电力系统保供产生不利影响。针对此问题,提出了一种以保安全为目标的省级光伏日内保障出力预测方法。首先,利用卷积神经网络(convolutional neural networks,CNN)的空间特征提取和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)的时间序列处理能力,构建基于卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)的省级光伏日内保障出力模型。然后,引入包括正偏差预测精度、预测功率修正强度、正偏差识别准确性和模型响应速度在内的多目标损失函数,识别并提取光伏预测功率的正偏差时序特征。接着,对省级光伏日内原始预测功率结果进行修正,获得最低的省级光伏日内出力水平,并建立了2种面向光伏保障出力预测结果的评价指标,即保障率和保障电量占比。最后,基于我国西北某省实际生产运行数据对所提方法的有效性进行了验证。 展开更多
关键词 保安全 光伏日内保障出力 cnn-bilstm 多目标损失函数 保障率 保障电量占比
原文传递
基于CNN-BiLSTM-Attention的工业数据中心IT设备能耗预测模型研究
12
作者 宋越 靳晟 +2 位作者 林栎 高国强 郭付展 《电子技术应用》 2025年第10期63-68,共6页
IT设备的能耗直接影响到工业数据中心的电力消耗,预测IT设备能耗对优化能源管理和资源规划具有重要意义。然而,由于IT能耗数据呈现出非线性、非平稳的特点,导致预测精度低。对此,结合卷积神经网络CNN、双向长短期记忆网络BiLSTM和注意... IT设备的能耗直接影响到工业数据中心的电力消耗,预测IT设备能耗对优化能源管理和资源规划具有重要意义。然而,由于IT能耗数据呈现出非线性、非平稳的特点,导致预测精度低。对此,结合卷积神经网络CNN、双向长短期记忆网络BiLSTM和注意力机制的优势,分别对IT设备能耗的局部特征、数据中深层次的关键信息进行提取,并根据自测IT设备能耗数据集构建基于CNN-BiLSTM-Attention的能耗预测模型,该模型的R2、MAE和RMSE分别为0.9053、0.0504、0.0673,相较于现有的LSTM、BiLSTM和CNN-BiLSTM模型均有不同程度的提高,说明该模型可以应用于工业数据中心内IT设备能耗的准确预测。 展开更多
关键词 能耗预测模型 cnn-bilstm-Attention 工业数据中心 深度学习
在线阅读 下载PDF
基于混合注意力机制的CNN-BiLSTM模型的温州港集装箱吞吐量预测
13
作者 丁天明 高翎嘉 《重庆交通大学学报(自然科学版)》 北大核心 2025年第8期90-98,共9页
为了更精确地预测港口集装箱吞吐量,提出了一种融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的预测模型,并引入多种注意力机制,以全面捕捉数据的全局特征。模型中将影响指标和历史集装箱吞吐量数据结合,作为多变量输入进行预测... 为了更精确地预测港口集装箱吞吐量,提出了一种融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的预测模型,并引入多种注意力机制,以全面捕捉数据的全局特征。模型中将影响指标和历史集装箱吞吐量数据结合,作为多变量输入进行预测。结果表明:与传统的LSTM预测模型和CNN-LSTM组合模型相比,该模型的平均绝对百分比误差(M APE)和均方根误差(R MSE)均有所降低,模型拟合度(R 2)显著提高。尤其在数据波动明显的情况下,该模型的预测结果更加精确,有助于港航企业及时调整规划决策与经营策略。 展开更多
关键词 交通运输工程 集装箱吞吐量预测 混合注意力机制 多变量输入 cnn-bilstm预测模型
在线阅读 下载PDF
基于Hyperband-CNN-BiLSTM模型的车辆油耗预测方法 被引量:1
14
作者 吐尔逊·买买提 孙慧 刘亚楼 《科学技术与工程》 北大核心 2025年第9期3896-3904,共9页
为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网... 为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。 展开更多
关键词 Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 组合模型
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
15
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型
16
作者 曹宇鑫 张瀚 +1 位作者 尹金超 李亚楠 《人民珠江》 2025年第4期1-8,共8页
在高水压和高渗压等复杂工况作用下,准确把握重力坝安全系数的时变规律并进行有效预测,对于大坝运行状态的科学管控至关重要。为此,基于深度学习理论的CNN-BiLSTM-Attention方法,提出以上游水位、坝顶顺河向位移、时效为自变量,抗滑稳... 在高水压和高渗压等复杂工况作用下,准确把握重力坝安全系数的时变规律并进行有效预测,对于大坝运行状态的科学管控至关重要。为此,基于深度学习理论的CNN-BiLSTM-Attention方法,提出以上游水位、坝顶顺河向位移、时效为自变量,抗滑稳定系数为因变量的耦联预测模型。通过对某坝高148.0 m的重力坝工程分析,模型的拟合平均绝对误差(Mean Absolute Error,MAE)和均方误差(Root Mean Square Error,RMSE)为1.12×10-3和1.66×10-3,预测误差MAE、RMSE分别为3.08×10-3和3.53×10-3,与传统统计回归方法相比,预测精度提高了51.80%和45.44%,与SVM(Support Vector Machine)算法相比,预测精度提高了16.08%和10.18%,显示出对有限元计算结果曲线更好的吻合度,预测精度优势也较为明显。 展开更多
关键词 cnn-bilstm-Attention 重力坝 预警指标 预测模型
在线阅读 下载PDF
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
17
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
基于聚类集合的EMD-CNN-BiLSTM自注意力机制短期电力负荷预测 被引量:1
18
作者 陈仪 刘春元 《软件工程》 2025年第3期1-5,46,共6页
为了提高短期电力负荷预测的精度和运算效率,提出了一种基于聚类集合的经验模态分解法(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、自注意力机制(Self-Attention,SAM)及双向长短期记忆网络(... 为了提高短期电力负荷预测的精度和运算效率,提出了一种基于聚类集合的经验模态分解法(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、自注意力机制(Self-Attention,SAM)及双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的混合预测模型。该模型利用EMD算法和K均值聚类算法将电力负荷数据分解与分组,并选取最优聚类分组数。随后,将各组数据送入CNN-BiLSTM自注意力机制神经网络中进行预测并融合得到完整的负荷数据。实验结果显示,所提方法的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别仅为3.436、1.049%和4.606,相较于传统算法,该模型在预测精度和效率上均有显著提升。 展开更多
关键词 短期负荷预测 经验模态分解 cnn-bilstm 自注意力机制
在线阅读 下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:4
19
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
基于 CNN-BiLSTM-SA 的 DDoS 攻击检测方案
20
作者 高宇晨 张新有 冯力 《成都信息工程大学学报》 2025年第4期415-421,共7页
针对传统DDoS攻击检测中存在准确率低、误报率高、低速率攻击流量难检测等问题,提出一种结合卷积神经网络叠加双向长短期记忆网络和自注意力的混合网络模型(CNN-BiLSTM-SA)的DDoS检测方法。卷积神经网络(CNN)和双向长短期记忆网络(BiLS... 针对传统DDoS攻击检测中存在准确率低、误报率高、低速率攻击流量难检测等问题,提出一种结合卷积神经网络叠加双向长短期记忆网络和自注意力的混合网络模型(CNN-BiLSTM-SA)的DDoS检测方法。卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)用于提取网络入侵数据的空间与时序特征,自注意力机制为BiLSTM学习的流量特征分配权重,最后利用softmax回归对数据进行分类。为模拟真实网络环境,在融合数据集Mix-DDoS上进行了一系列的消融实验,并评估对比所提方案与其他改进模型的性能。实验结果表明,本文方案对DDoS攻击检测的准确率达到99.45%,为准确发现DDoS攻击,进一步采取防范措施提供保障。 展开更多
关键词 网络安全 分布式拒绝服务攻击 cnn-bilstm 自注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部