期刊文献+
共找到4,231篇文章
< 1 2 212 >
每页显示 20 50 100
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
1
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(cnn) 长短期记忆网络(LSTM) 注意力机制
原文传递
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
2
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于1DCNN和LSTM融合的超宽带NLoS/LoS识别方法研究
3
作者 郑恩让 孟鑫 +3 位作者 姜苏英 薛晶 张毅 李强 《通信学报》 北大核心 2025年第6期285-302,共18页
为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用... 为提升超宽带(UWB)定位系统在非视距(NLoS)条件下的测距精度与定位性能,提出一种基于一维卷积-卷积长短期记忆(LSTM)注意力网络(1DCNN-CLANet)的深度学习模型。该模型首先利用卷积神经网络(CNN)提取通道脉冲响应(CIR)的空间特征,并利用长短期记忆网络捕捉CIR的时序特征。其次,利用CNN深度挖掘距离数据、信号振幅、最大噪声强度等额外特征。最后,引入注意力机制并构建CIR分支和额外特征分支的融合模型,实现对UWB信号的非视距/视距识别。实验结果表明,复杂环境下1DCNN-CLANet的二分类和四分类识别准确率分别为99.51%和98.47%,优于其他方案。该模型在UWB定位系统中表现出良好的非视距识别能力,具有较强的应用前景。 展开更多
关键词 超宽带 非视距 深度学习模型 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于VMD-CNN-BiTCN滚动轴承故障诊断 被引量:3
4
作者 徐志祥 玄永伟 +1 位作者 王洪洋 王壬杰 《微特电机》 2025年第2期68-73,共6页
针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(V... 针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(VMD)分解为K个本征模函数(IMF);将分解后的信号输入到CNN层中进行特征提取和信号压缩;将该信号送入BiTCN中,提取正反两个方向的时序特征,使用膨胀卷积最大化感受野;通过池化层和全连接层实现滚动轴承故障诊断。实验结果显示,该模型在特征提取能力和时序特征感知具有显著优势,能够在多个数据集中表现出良好的故障诊断性能和泛化能力。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 双向时间卷积网络 变分模态分解
在线阅读 下载PDF
具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用 被引量:1
5
作者 马良玉 胡景琛 +1 位作者 段晓冲 黄日灏 《南京信息工程大学学报》 北大核心 2025年第3期374-383,共10页
针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗... 针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗,结合机理分析及极端梯度提升(XGBoost)算法对特征重要性的评估确定模型的输入输出参数,进而采用具有注意力机制的CNN-GRU模型建立风电机组正常运行工况的性能预测模型.以该预测模型为基础,利用时移滑动窗口构建风电机组状态评价指标,并结合统计学中的区间估计法确定预警阈值,最终实现机组异常工况预警.应用某风电机组真实历史故障数据进行实验,结果表明,本文所提方法能够准确地对异常状态进行提前识别和预警,有利于运维人员及时处理故障,保证机组安全稳定运行. 展开更多
关键词 风电机组 卷积神经网络 门控循环单元 注意力机制 故障预警
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断 被引量:1
6
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
7
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 TRANSFORMER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
基于改进BERT和轻量化CNN的业务流程合规性检查方法
8
作者 田银花 杨立飞 +1 位作者 韩咚 杜玉越 《计算机工程》 北大核心 2025年第7期199-209,共11页
业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据... 业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。 展开更多
关键词 业务流程 合规性检查 表示学习 事件日志 卷积神经网络
在线阅读 下载PDF
基于轻量化Mask R⁃CNN的车型检测算法
9
作者 许超 杨丰熙 +1 位作者 李博 王浩宇 《现代电子技术》 北大核心 2025年第21期127-136,共10页
车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络... 车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络替换为FasterNet特征提取网络,在降低算法复杂度的同时提升算法精度;其次,构建基于DO卷积的改进FPN特征融合网络,使算法既降低复杂度又提升精度;最后,将损失函数替换为Smooth L_(1)损失函数,在不改变当前算法复杂度的情况下对算法精度实现了进一步提升。实验结果表明,所提算法兼顾精度与实时性需求,且具有较好的泛化能力,更适配于实际应用中的车型检测。 展开更多
关键词 Mask R⁃cnn 车型检测 主干网络 特征融合 损失函数 轻量化
在线阅读 下载PDF
基于AirComp的分布式CNN推理资源调度研究
10
作者 刘乔寿 邓义锋 +1 位作者 胡昊南 杨振巍 《电子与信息学报》 北大核心 2025年第7期2263-2272,共10页
在传统AirComp系统中,汇聚节点接收到来自不同发送端的信号相位是否严格对齐将直接影响Air-Comp的计算精度,将AirComp引入分布式联邦学习和分布式推理系统中,由于相位对齐问题造成的计算误差则会导致模型训练精度和推理精度下降。目前,... 在传统AirComp系统中,汇聚节点接收到来自不同发送端的信号相位是否严格对齐将直接影响Air-Comp的计算精度,将AirComp引入分布式联邦学习和分布式推理系统中,由于相位对齐问题造成的计算误差则会导致模型训练精度和推理精度下降。目前,现有的AirComp分布式联邦学习和分布式推理系统,无论在训练还是推理过程中,基本上都未考虑信道对模型性能的影响,导致其推理精度远低于本地训练和推理的结果,这一点在低信噪比时表现得尤为突出。该文提出了一种MOSI-AirComp系统,其中同一轮参与计算的发射信号来自同一节点,因此可以忽略信号的相位对齐问题。此外,该文设计了一种双支路训练模型,上支路基于原始模型的基础上添加Loss层模拟信道干扰,而下支路保持原始的网络模型结构用于推理任务,以实现更好的抗衰落和抗噪声能力。该文还提出了一种基于权重的功率控制方案和路径选择算法,根据节点间距离和模型权重选择最优的传输回路,并将模型权重作为功率控制因子的一部分来调节传输功率,以此实现卷积过程中的乘法操作,同时利用Air-Comp的叠加特性完成加法操作,从而实现空中卷积。仿真结果证明了MOSI-AirComp系统的有效性。与传统模型相比,双支路训练模型在小尺度衰落场景下,MNIST数据集和CIFAR10数据集在不同信噪比下的推理精度分别提高了2%~18%和0.4%~11.2%。 展开更多
关键词 空中计算(AirComp) 分布式推理 卷积神经网络(cnn) 功率控制
在线阅读 下载PDF
电网N-1下融合CNN与Transformer的综合能源系统静态安全校核
11
作者 陈厚合 丁唯一 +2 位作者 刘光明 李雪 张儒峰 《电力自动化设备》 北大核心 2025年第5期1-9,18,共10页
风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推... 风光等新能源高比例渗透衍生出大量的源-荷场景,电-气综合能源系统(IEGS)的N-1安全校核面临计算挑战。深度学习技术在处理大量数据时具备显著优势,为解决该问题提供了新的思路。将评价电力系统安全性的Hyper-box和Hyper-ellipse判据推广到天然气系统,并形成IEGS综合安全指标以划分子系统的运行状态;构建卷积神经网络(CNN)-Transformer神经网络以适应量测数据与校核目标的非线性关系,实现快速校核;考虑到系统数据的量纲和数值差异大以及系统状态离散化的特点,分别对数据进行Z-score标准化和独热编码数值化以提升校核精度,并设计改进焦点损失函数以进一步提取不同的场景下天然气系统运行状态的变化规律。以含高比例新能源的综合能源系统(E5G5、E39G20系统)为算例,验证所提方法的高效性和准确性。 展开更多
关键词 电-气综合能源系统 N-1安全校核 深度学习 卷积神经网络 Transformer神经网络 改进焦点损失函数
在线阅读 下载PDF
基于CNN-SLinformer算法的风电机组偏航系统故障预测
12
作者 火久元 谢东宸 +1 位作者 常琛 李昕 《湖南大学学报(自然科学版)》 北大核心 2025年第8期140-150,共11页
随着风电产业的快速发展,风电机组故障停机的比例也在上升,其中偏航系统故障尤为突出,占据了总停机时间的近三分之一(28.7%).为减少停机时间和运维费用,本文提出了一种基于SCADA数据的深度学习模型CNN-Smart_Linformer(CNN-SLinformer)... 随着风电产业的快速发展,风电机组故障停机的比例也在上升,其中偏航系统故障尤为突出,占据了总停机时间的近三分之一(28.7%).为减少停机时间和运维费用,本文提出了一种基于SCADA数据的深度学习模型CNN-Smart_Linformer(CNN-SLinformer),用于预测风电机组偏航系统的故障发生时间.该模型通过引入动态自注意力权重计算线性投影矩阵,自适应地捕捉输入序列的变化,显著增强了模型在不同运行环境下的泛化能力.它结合了卷积神经网络(CNN)在局部特征提取的优势与SLinformer在捕捉长期依赖关系的能力.实际风电场SCADA数据的实验结果表明,CNN-SLinformer模型在偏航故障预测任务中显著提高了预测精度,Score降低至144.50,同时模型运行时间更短,为风电场提供了有效的故障预测工具. 展开更多
关键词 风电机组 偏航系统 卷积神经网络(cnn) SLinformer 故障预测
在线阅读 下载PDF
基于IWOA-CNN-LSTM模型的光伏发电功率预测
13
作者 王琦 徐晓光 《曲阜师范大学学报(自然科学版)》 2025年第4期97-102,共6页
该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实... 该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实现对输入数据高维特征的提取和拟合来进行预测,提高了模型预测精度.基于澳大利亚某光伏电站数据的实验结果表明,与其他模型相比,所提出的预测模型具有更高的精度. 展开更多
关键词 光伏功率预测 卷积神经网络 长短期记忆网络 鲸鱼优化算法
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
14
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
原文传递
基于多信息融合的INFO-VMD-CNN的齿轮箱故障诊断方法
15
作者 吴胜利 郑子润 邢文婷 《振动与冲击》 北大核心 2025年第13期309-316,共8页
针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD... 针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)的齿轮故障诊断方法。该方法首先采用熵权法将不同位置的振动传感器信号信息进行融合,利用INFO对VMD算法中参数进行优化,并设计一个复合评价指标作为参数优化的评价标准,使用奇异峭度差分谱的方法对敏感分量进行重构;其次,从重构的信号中提取时域、频域特征并输入到CNN模型中进行分类;最后通过Shap(Shapley additive explanations)值法对模型输入特征的重要性进行排序,分析不同特征组合对模型分类和特定故障识别的影响。在东南大学行星齿轮数据集上进行验证,结果表明,利用所提特征组合进行故障诊断,CNN模型故障诊断准确率为98.24%,高于其他特征组合,为行星齿轮箱的故障诊断提供了一组有效的特征指标。 展开更多
关键词 行星齿轮箱故障诊断 向量加权平均算法(INFO) 奇异峭度差分谱 卷积神经网络(cnn) 评价指标 Shap值法
在线阅读 下载PDF
基于卷积神经网络CNN模型的课堂情绪识别系统设计
16
作者 谭方勇 白晨宇 吉彩云 《苏州市职业大学学报》 2025年第1期42-47,共6页
针对目前传统的课堂情绪管理系统中存在的识别和储存问题,提出了一种基于CNN的面部情绪识别系统。该系统通过课堂图像采集、人脸定位与身份识别、人脸情绪识别、课堂情绪数据统计等方法,并配合人脸情绪识别技术来实现课堂教学效果的评... 针对目前传统的课堂情绪管理系统中存在的识别和储存问题,提出了一种基于CNN的面部情绪识别系统。该系统通过课堂图像采集、人脸定位与身份识别、人脸情绪识别、课堂情绪数据统计等方法,并配合人脸情绪识别技术来实现课堂教学效果的评估。经测试验证,该系统能够有效地满足课堂教学效果反馈评估的需求。 展开更多
关键词 卷积神经网络(cnn) 教学监控 人脸识别 情绪识别 教学评估
在线阅读 下载PDF
基于Mask R—CNN的轻量级草莓实例分割算法
17
作者 王成军 江诚婕 +1 位作者 丁凡 柳炜 《中国农机化学报》 北大核心 2025年第7期118-123,F0003,共7页
针对果园采摘环境复杂、草莓与周边环境难以精确分割、现有模型处理速度无法实现快速分割等问题,提出一种基于Mask R—CNN的轻量级草莓实例分割算法。在原始Mask R—CNN算法的基础上进行改进,采用MobileNetV3网络替代原始的ResNet101骨... 针对果园采摘环境复杂、草莓与周边环境难以精确分割、现有模型处理速度无法实现快速分割等问题,提出一种基于Mask R—CNN的轻量级草莓实例分割算法。在原始Mask R—CNN算法的基础上进行改进,采用MobileNetV3网络替代原始的ResNet101骨干网络来轻量化算法,且将原本MobileNetV3残差结构中的通道注意力机制替换成协同注意力机制模块,结合特征金字塔网络架构进行特征提取,实现草莓个体的精准快速定位分割。在标注数据集上进行对比实验,结果表明,改进的Mask R—CNN算法与原始Mask R—CNN算法相比,边框mAP和掩膜mAP分别提升1.75%和4.05%,检测速度提高20.09帧/s,减少模型对硬件存储空间和算力的依赖。 展开更多
关键词 草莓图像 实例分割 改进Mask R—cnn CA注意力机制 轻量化网络
在线阅读 下载PDF
基于深度学习算法Mask R-CNN的甲状腺结节检测模型研究
18
作者 王杰 王至诚 +2 位作者 娄帅 董建成 曹新志 《医学信息学杂志》 2025年第3期84-89,共6页
目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,... 目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,使用labelme工具进行结节位置标注。对Mask R-CNN的主干网络分别采用MobileNetV3、ResNet50、ResNet101和ResNet152进行替换,并引入特征金字塔和感兴趣区域对齐,采用迁移学习训练策略训练模型,比较不同网络下目标检测效果。结果/结论主干网络采用ResNet101训练的模型平均精确度为86.8%,平均召回率为95.3%,平均F1分数为90.6%,优于其他主干网络,能更精确地检测甲状腺结节,具有一定临床应用价值。 展开更多
关键词 甲状腺结节 Mask R-cnn 目标检测 神经网络
暂未订购
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:3
19
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(BiLSTM) 卷积神经网络(cnn) 黑灰产 推特
在线阅读 下载PDF
基于CNN-LSTM的序列图像空间目标识别方法 被引量:2
20
作者 齐思宇 赵慧洁 +3 位作者 姜宏志 李旭东 王思航 郭琦 《上海航天(中英文)》 2025年第2期186-193,共8页
针对现有的基于序列图像的空间目标识别方法难以在特征层级进行融合的问题,提出了将深度卷积网络(CNN)与循环神经网络(RNN)相结合的方法,并对网络模型加以改进。针对单幅图像如何作为序列特征输入的问题,对卷积网络的末端进行修改,将特... 针对现有的基于序列图像的空间目标识别方法难以在特征层级进行融合的问题,提出了将深度卷积网络(CNN)与循环神经网络(RNN)相结合的方法,并对网络模型加以改进。针对单幅图像如何作为序列特征输入的问题,对卷积网络的末端进行修改,将特征图作为序列特征输入;针对序列特征如何映射到目标类别的问题,对长短期记忆网络(LSTM)网络末端进行修改,增加了新的全连接层,得到输出类别。使用0.001~0.006高斯噪声水平训练,以0.007~0.010作为测试集,识别平均准确率(mAP)由90.7%提升至99.16%;训练集与测试集在不同姿态情况下,mAP为94.71%。网络参数量仅为283.0 M。现有的仅在结果层级融合进行识别的问题得到了有效解决。 展开更多
关键词 目标识别 序列图像 空间目标 卷积网络(cnn) 循环神经网络(RNN)
在线阅读 下载PDF
上一页 1 2 212 下一页 到第
使用帮助 返回顶部