已有的机器证明方法在处理一些涉及大规模符号运算的几何问题时,常因算法复杂度过高或机器能力的限制,有时并不能在合理时间内实现可读机器证明.故提出了复数法这一新的几何定理机器证明算法,并选用符号计算功能较为强大的软件Mathemat...已有的机器证明方法在处理一些涉及大规模符号运算的几何问题时,常因算法复杂度过高或机器能力的限制,有时并不能在合理时间内实现可读机器证明.故提出了复数法这一新的几何定理机器证明算法,并选用符号计算功能较为强大的软件Mathematica创建了新证明器CNMP(complex number method prover).新提出的复数法能有效地解决构造型几何命题,对用于测试与评价几何定理证明器性能的综合性平台TGTP(thousands of geometric problems for geometric theorem provers)上的180个几何问题的实验结果表明,CNMP的解题能力与运行效率均令人满意.尤其是对于一些具有相当难度的几何定理,如五圆定理、Morley定理、Lemoine圆定理、Thebault定理、Brocard圆定理等,CNMP均能在短时间内给出可读机器证明.展开更多
环核苷酸门控离子通道(Cyclic nucleotide-gated ion channels,CNGC)是非选择性的阳离子通道,受细胞内信使小分子环核苷酸(cAMP和cGMP)以及Ca^(2+)/CaM调控。哺乳动物CNGC功能的变构调节机制受到CaM结合影响,哺乳动物CNGC在胞质N和/或C...环核苷酸门控离子通道(Cyclic nucleotide-gated ion channels,CNGC)是非选择性的阳离子通道,受细胞内信使小分子环核苷酸(cAMP和cGMP)以及Ca^(2+)/CaM调控。哺乳动物CNGC功能的变构调节机制受到CaM结合影响,哺乳动物CNGC在胞质N和/或C末端具有CaMBD。在植物方面,研究大多集中于与植物CNGC的环核苷酸结合结构域重叠的C端CaM结合结构域(CaMBD)。然而近期对模式植物拟南芥CNGC12的研究提供了单个植物CNGC同种型具有多个CaMBD的证据。重点总结了动植物钙调蛋白多个结合位点调控环核苷酸门控离子通道的研究进展。展开更多
Cyclic nucleotide monophosphates(cNMPs),including 3′,5′-cyclic adenosine monophosphate(cAMP)and 3′,5′-cyclic guanosine monophosphate,are well-established signaling molecules essential for finely tuned plant respon...Cyclic nucleotide monophosphates(cNMPs),including 3′,5′-cyclic adenosine monophosphate(cAMP)and 3′,5′-cyclic guanosine monophosphate,are well-established signaling molecules essential for finely tuned plant responses to environmental and developmental stimuli(Kwiatkowski et al.,2024a).3′,5′-cNMPs are synthesized by cyclases,notably adenylate cyclases(ACs)and guanylate cyclases,that catalyze ATP and GTP to cAMP and 3′,5′-cyclic guanosine monophosphate.Highly conserved amino acid motifs derived from the catalytic centers of ACs/guanylate cyclases across species diagnostics for cyclase activities in the early 2000s(Gehring,2010)have led to the identification of>100 candidate cyclases in Arabidopsis thaliana,many of which have been experimentally validated(Kwiatkowski et al.,2024a).Unlike in mammals or bacteria,they constitute a part of complex proteins with varied domain architectures where the cyclases moonlight(Turek et al.,2024).Such regulatory function is evidenced through ACs operating as cryptic sites in transporters and disease-related proteins(Wong et al.,2023),some of which have been identified in crop plants such as maize and jujube,where they affect fundamental biological processes including germination,root growth,flowering,and responses to heat stress(Yang et al.,2021;Liu et al.,2023).展开更多
文摘已有的机器证明方法在处理一些涉及大规模符号运算的几何问题时,常因算法复杂度过高或机器能力的限制,有时并不能在合理时间内实现可读机器证明.故提出了复数法这一新的几何定理机器证明算法,并选用符号计算功能较为强大的软件Mathematica创建了新证明器CNMP(complex number method prover).新提出的复数法能有效地解决构造型几何命题,对用于测试与评价几何定理证明器性能的综合性平台TGTP(thousands of geometric problems for geometric theorem provers)上的180个几何问题的实验结果表明,CNMP的解题能力与运行效率均令人满意.尤其是对于一些具有相当难度的几何定理,如五圆定理、Morley定理、Lemoine圆定理、Thebault定理、Brocard圆定理等,CNMP均能在短时间内给出可读机器证明.
文摘环核苷酸门控离子通道(Cyclic nucleotide-gated ion channels,CNGC)是非选择性的阳离子通道,受细胞内信使小分子环核苷酸(cAMP和cGMP)以及Ca^(2+)/CaM调控。哺乳动物CNGC功能的变构调节机制受到CaM结合影响,哺乳动物CNGC在胞质N和/或C末端具有CaMBD。在植物方面,研究大多集中于与植物CNGC的环核苷酸结合结构域重叠的C端CaM结合结构域(CaMBD)。然而近期对模式植物拟南芥CNGC12的研究提供了单个植物CNGC同种型具有多个CaMBD的证据。重点总结了动植物钙调蛋白多个结合位点调控环核苷酸门控离子通道的研究进展。
基金supported by grants from the National Natural Science Foundation of China(32100581)the International Collaborative Research Program of Wenzhou-Kean University(ICRP202202)the Wenzhou-Kean University Institute for International Frontier Interdisciplinary Studies(KY20250603000445).
文摘Cyclic nucleotide monophosphates(cNMPs),including 3′,5′-cyclic adenosine monophosphate(cAMP)and 3′,5′-cyclic guanosine monophosphate,are well-established signaling molecules essential for finely tuned plant responses to environmental and developmental stimuli(Kwiatkowski et al.,2024a).3′,5′-cNMPs are synthesized by cyclases,notably adenylate cyclases(ACs)and guanylate cyclases,that catalyze ATP and GTP to cAMP and 3′,5′-cyclic guanosine monophosphate.Highly conserved amino acid motifs derived from the catalytic centers of ACs/guanylate cyclases across species diagnostics for cyclase activities in the early 2000s(Gehring,2010)have led to the identification of>100 candidate cyclases in Arabidopsis thaliana,many of which have been experimentally validated(Kwiatkowski et al.,2024a).Unlike in mammals or bacteria,they constitute a part of complex proteins with varied domain architectures where the cyclases moonlight(Turek et al.,2024).Such regulatory function is evidenced through ACs operating as cryptic sites in transporters and disease-related proteins(Wong et al.,2023),some of which have been identified in crop plants such as maize and jujube,where they affect fundamental biological processes including germination,root growth,flowering,and responses to heat stress(Yang et al.,2021;Liu et al.,2023).