To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and intern...To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.展开更多
In this paper we propose a controllability and observability measure at switch level for CMOS circuits based on the cost analysis approach.The complexity of the algorithm is nearly linear.
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff...Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.展开更多
This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal...This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal/RF CMOS technology. The design methodologies and approaches for the optimization of the ICs are presented. The first design is optimized for mixed-signal transistor, oscillated at 2.64 GHz with a phase noise of -93.5 dBc/Hz at 500 kHz offset. The second one optimized for RF transistor, using the same architecture, oscillated at 2.61 GHz with a phase noise of -95.8 dBc/Hz at 500 kHz offset. Under a 2 V supply, the power dissipation is 8 mW, and the maximum buffered output power for mixed-signal and RF transistor are -7 dBm and -5.4 dBm, respectively. Both kinds of oscillators make use of on-chip components only, allowing for simple and robust integration.展开更多
The folded-cascode structure is used to realize the low-voltage low-power consumption mixer, whose performance parameters have big influence on the navigation radio receiver's performance. Adopting the folded-cascode...The folded-cascode structure is used to realize the low-voltage low-power consumption mixer, whose performance parameters have big influence on the navigation radio receiver's performance. Adopting the folded-cascode structure, the folded-cascode mixer (FCM) has a lower power supply voltage of 1.2 V and realizes the design trade-offs among the high transconductance, high linearity and low noise. The difficulties of realizing the trade-offs between the linearity and noise performance, the linearity and conversion gain, the conversion gain and noise performance are reduced. Fabricated in an radio frequency (RF) 0.18 μm CMOS process, the FCM has an active area of about 200 μm ×150 μm and consumes approximate 3.9 mW. The test results show that the FCM features a conversion gain (Gc) of some 14.5 dB, an input 1 dB compression point (Pin-1dB) of almost -13 dBm and a dual sideband (DSB) noise figure of around 12 dB. The FCM can be applied to the navigation radio receivers and electronic systems for aviation and aerospace or other related fields.展开更多
Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also propose...Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.展开更多
The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs,trading-off between the precision,speed,and size of the chip.In order to ensure the linearity of the DAC,a double...The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs,trading-off between the precision,speed,and size of the chip.In order to ensure the linearity of the DAC,a double Centro symmetric current matrix is designed by the Q2 random walk strategy.To achieve better dynamic performance,a latch is added in front of the current switch to change the input signal,such as its optimal cross-point and voltage level.For a 12bit resolution,the converter reaches an update rate of 300MHz.展开更多
A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented witho...A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.展开更多
A 1.9GHz down-conversion CMOS mixer with a novel folded Gilbert cell,intended for use in GSM1900 (PCS1900) low-IF receivers,is fabricated in a RF 0.18μm CMOS process. The prototype demonstrates good performance at ...A 1.9GHz down-conversion CMOS mixer with a novel folded Gilbert cell,intended for use in GSM1900 (PCS1900) low-IF receivers,is fabricated in a RF 0.18μm CMOS process. The prototype demonstrates good performance at an intermediate frequency of 100kHz. It achieves a conversion gain of 6dB, SSB noise figure of 18. 5dB (1MHz IF) ,and IIP3 11.5dBm while consuming a 7mA current from a 3.3V power supply.展开更多
This paper presents a 2GS/s 10bit CMOS digital-to-analog converter (DAC) that consists of two unit current-cell matrixes for 6MSBs and 4LSBs, respectively, trading off between the precision and size of the chip. Cur...This paper presents a 2GS/s 10bit CMOS digital-to-analog converter (DAC) that consists of two unit current-cell matrixes for 6MSBs and 4LSBs, respectively, trading off between the precision and size of the chip. Current mode logic (CML) is used to ensure high speed,and a double centro-symmetric current matrix is designed by the Q^2 random walk strategy in order to ensure the linearity of the DAC. The DAC occupies 2.2mm × 2.2mm of die area and consumes 790mW with a single 3.3V power supply.展开更多
A novel superimposed photodetector (PD) is put forward. The photodetector can obtain a couple Of differential photocur- rent signals from one input optical signal. The light injection efficiency and the vertical wor...A novel superimposed photodetector (PD) is put forward. The photodetector can obtain a couple Of differential photocur- rent signals from one input optical signal. The light injection efficiency and the vertical work distance of this new.photode- tector are much higher than those of the others. The superimposed photodetctor is designed based on the standard 0.18 p.m CMOS process. The responsivity, bandwidth and transient response of the photodetector are simulated by a commercial simulation software of ATLAS. The responsivities of two obtained photocurrent signals are 0.035 A/W and 0.034 A/W, while the bandwidths are 3.8 GHz and 5.2 GHz, respectively. A full differential optical receiver which uses the superim- posed photodetector as input is simulated. The frequency response and 4 Gbit/s eye diagram of the optical receiver are also obtained. The results show that the two output signals can be used as the differential signal.展开更多
Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be...Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.展开更多
In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based techni...In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.展开更多
Metal-oxide-semiconductor field effect transistor(MOSFET) intrinsic gain degradation caused by channel length modulation(CLM) effect is examined.A simplified model based on Berkeley short-channel insulator-gate field ...Metal-oxide-semiconductor field effect transistor(MOSFET) intrinsic gain degradation caused by channel length modulation(CLM) effect is examined.A simplified model based on Berkeley short-channel insulator-gate field effect transistor model version 4(BSIM4) current expression for sub-100 nm MOSFET intrinsic gain is deduced,which only needs a few technology parameters.With this transistor intrinsic gain model,complementary metal-oxide-semiconductor(CMOS) operational amplifier(op amp) DC gain could be predicted.A two-stage folded cascode op amp is used as an example in this work.Non-minimum length device is used to improve the op amp DC gain.An improvement of 20 dB is proved when using doubled channel length design.Optimizing transistor bias condition and using advanced technology with thinner gate dielectric thickness and shallower source/drain junction depth can also increase the op amp DC gain.After these,a full op amp DC gain scaling roadmap is proposed,from 130 nm technology node to 32 nm technology node.Five scaled op amps are built and their DC gains in simulation roll down from 69.6 to 41.1 dB.Simulation shows transistors biased at higher source-drain voltage will have more impact on the op amp DC gain scaling over technology.The prediction based on our simplified gain model agrees with SPICE simulation results.展开更多
A low-power and high-speed 16:1 MUX IC designed for Optical fiber communication based on TSMC 0.25 μm CMOS technology is represented. A tree-type architecture was utilized. The output data bit rate is 2.5 Gb/s at inp...A low-power and high-speed 16:1 MUX IC designed for Optical fiber communication based on TSMC 0.25 μm CMOS technology is represented. A tree-type architecture was utilized. The output data bit rate is 2.5 Gb/s at input clock rate of 1.25 GHz. The simulation results show that the output signal has peak-to-peak amplitude of 400 mV, the power dissipation is less than 200 mW and the power dissipation of core circuit is less than 20 mW at the 2.5 Gb/s standard bit rate and supply voltage of 2.5 V. The chip area is (1.8) mm2.展开更多
The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and t...The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and the comparator with internal hysteresis. The receiver supports 3.5 Gbps data rate with 7.4 mA current at 1.8 V supply according to post-layout circuit simulations. The circuit has the power consumption of 13.1 MW. Comparing with the conventional circuit, the circuit is achieved to reduce the power consumption by 19.1% and the data rate by 14.3 %. The validity and effectiveness of the proposed circuit are verified through the circuit simulation with Samsung 0.18 μm CMOS (complementary metal-oxide-semiconductor) standard technology under the 1.8 V supply voltage.展开更多
We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC.The model encompasses mechanical,thermal,and electrical domains to facilitate...We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC.The model encompasses mechanical,thermal,and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform.The compensation strategy is implemented on-chip with a variable temperature difference heating circuit.Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor Rc with a resistance value of 748.21Ωand a temperature coefficient of resistance of 3.037×10−3℃^(−1) at 25℃.Experimental validation demonstrates that within an ambient temperature range of 0–50℃ and a flow range of 0-10 m/s,the temperature drift of the sensor is reduced to±1.6%,as compared to±8.9%observed in a counterpart with the constant temperature difference circuit.Therefore,this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings.展开更多
A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the ...A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.展开更多
文摘To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.
文摘In this paper we propose a controllability and observability measure at switch level for CMOS circuits based on the cost analysis approach.The complexity of the algorithm is nearly linear.
基金This work was supported by the special fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR2011).
文摘Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.
文摘Submicron CMOS IC technology, including triple layer resist lithography technology, RIE, LDD, Titanium Salicide, shallow junction, thin gate oxide, no bird's beak isolation and channel's multiple implantation doping technology have been developed. 0.50μm. CMOS integrated circuits have been fabricated using this submicron CMOS process.
基金TheNationalHighTechnologyResearchandDevelopmentProgramofChina (863Program ) (No .2 0 0 2AA1Z160 0 )
文摘This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal/RF CMOS technology. The design methodologies and approaches for the optimization of the ICs are presented. The first design is optimized for mixed-signal transistor, oscillated at 2.64 GHz with a phase noise of -93.5 dBc/Hz at 500 kHz offset. The second one optimized for RF transistor, using the same architecture, oscillated at 2.61 GHz with a phase noise of -95.8 dBc/Hz at 500 kHz offset. Under a 2 V supply, the power dissipation is 8 mW, and the maximum buffered output power for mixed-signal and RF transistor are -7 dBm and -5.4 dBm, respectively. Both kinds of oscillators make use of on-chip components only, allowing for simple and robust integration.
文摘The folded-cascode structure is used to realize the low-voltage low-power consumption mixer, whose performance parameters have big influence on the navigation radio receiver's performance. Adopting the folded-cascode structure, the folded-cascode mixer (FCM) has a lower power supply voltage of 1.2 V and realizes the design trade-offs among the high transconductance, high linearity and low noise. The difficulties of realizing the trade-offs between the linearity and noise performance, the linearity and conversion gain, the conversion gain and noise performance are reduced. Fabricated in an radio frequency (RF) 0.18 μm CMOS process, the FCM has an active area of about 200 μm ×150 μm and consumes approximate 3.9 mW. The test results show that the FCM features a conversion gain (Gc) of some 14.5 dB, an input 1 dB compression point (Pin-1dB) of almost -13 dBm and a dual sideband (DSB) noise figure of around 12 dB. The FCM can be applied to the navigation radio receivers and electronic systems for aviation and aerospace or other related fields.
文摘Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.
文摘The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs,trading-off between the precision,speed,and size of the chip.In order to ensure the linearity of the DAC,a double Centro symmetric current matrix is designed by the Q2 random walk strategy.To achieve better dynamic performance,a latch is added in front of the current switch to change the input signal,such as its optimal cross-point and voltage level.For a 12bit resolution,the converter reaches an update rate of 300MHz.
文摘A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.
文摘A 1.9GHz down-conversion CMOS mixer with a novel folded Gilbert cell,intended for use in GSM1900 (PCS1900) low-IF receivers,is fabricated in a RF 0.18μm CMOS process. The prototype demonstrates good performance at an intermediate frequency of 100kHz. It achieves a conversion gain of 6dB, SSB noise figure of 18. 5dB (1MHz IF) ,and IIP3 11.5dBm while consuming a 7mA current from a 3.3V power supply.
文摘This paper presents a 2GS/s 10bit CMOS digital-to-analog converter (DAC) that consists of two unit current-cell matrixes for 6MSBs and 4LSBs, respectively, trading off between the precision and size of the chip. Current mode logic (CML) is used to ensure high speed,and a double centro-symmetric current matrix is designed by the Q^2 random walk strategy in order to ensure the linearity of the DAC. The DAC occupies 2.2mm × 2.2mm of die area and consumes 790mW with a single 3.3V power supply.
基金supported by the National Natural Science Foundation of China(No.61036002)the Natural Science Foundation of Tianjin(No.11JCZDJC15100)
文摘A novel superimposed photodetector (PD) is put forward. The photodetector can obtain a couple Of differential photocur- rent signals from one input optical signal. The light injection efficiency and the vertical work distance of this new.photode- tector are much higher than those of the others. The superimposed photodetctor is designed based on the standard 0.18 p.m CMOS process. The responsivity, bandwidth and transient response of the photodetector are simulated by a commercial simulation software of ATLAS. The responsivities of two obtained photocurrent signals are 0.035 A/W and 0.034 A/W, while the bandwidths are 3.8 GHz and 5.2 GHz, respectively. A full differential optical receiver which uses the superim- posed photodetector as input is simulated. The frequency response and 4 Gbit/s eye diagram of the optical receiver are also obtained. The results show that the two output signals can be used as the differential signal.
基金supported by the National Natural Science Foundation of China (No. 61474081)Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (No. DH201513)
文摘Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.
基金Supported by NSF of the United States under contract 5978 East Asia and Pacific Program 9602485
文摘In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.
文摘Metal-oxide-semiconductor field effect transistor(MOSFET) intrinsic gain degradation caused by channel length modulation(CLM) effect is examined.A simplified model based on Berkeley short-channel insulator-gate field effect transistor model version 4(BSIM4) current expression for sub-100 nm MOSFET intrinsic gain is deduced,which only needs a few technology parameters.With this transistor intrinsic gain model,complementary metal-oxide-semiconductor(CMOS) operational amplifier(op amp) DC gain could be predicted.A two-stage folded cascode op amp is used as an example in this work.Non-minimum length device is used to improve the op amp DC gain.An improvement of 20 dB is proved when using doubled channel length design.Optimizing transistor bias condition and using advanced technology with thinner gate dielectric thickness and shallower source/drain junction depth can also increase the op amp DC gain.After these,a full op amp DC gain scaling roadmap is proposed,from 130 nm technology node to 32 nm technology node.Five scaled op amps are built and their DC gains in simulation roll down from 69.6 to 41.1 dB.Simulation shows transistors biased at higher source-drain voltage will have more impact on the op amp DC gain scaling over technology.The prediction based on our simplified gain model agrees with SPICE simulation results.
文摘A low-power and high-speed 16:1 MUX IC designed for Optical fiber communication based on TSMC 0.25 μm CMOS technology is represented. A tree-type architecture was utilized. The output data bit rate is 2.5 Gb/s at input clock rate of 1.25 GHz. The simulation results show that the output signal has peak-to-peak amplitude of 400 mV, the power dissipation is less than 200 mW and the power dissipation of core circuit is less than 20 mW at the 2.5 Gb/s standard bit rate and supply voltage of 2.5 V. The chip area is (1.8) mm2.
文摘The paper presents the design and implementation of LVDS (low-voltage differential signaling) receiver circuit, fully compatible with LVDS standard. The proposed circuit is composed of the telescopic amplifier and the comparator with internal hysteresis. The receiver supports 3.5 Gbps data rate with 7.4 mA current at 1.8 V supply according to post-layout circuit simulations. The circuit has the power consumption of 13.1 MW. Comparing with the conventional circuit, the circuit is achieved to reduce the power consumption by 19.1% and the data rate by 14.3 %. The validity and effectiveness of the proposed circuit are verified through the circuit simulation with Samsung 0.18 μm CMOS (complementary metal-oxide-semiconductor) standard technology under the 1.8 V supply voltage.
基金supported by the National Natural Science Foundation of China(62474115,52105582)Natural Science Foundation of Guangdong Province(2024A1515030026,2022A1515010894)+1 种基金Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030,JCYJ20220818095810023,ZDSYS20220527171402005)the State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024013)for Linze Hong,Ke Xiao,Xiangyu Song,and Wei Xu.
文摘We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC.The model encompasses mechanical,thermal,and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform.The compensation strategy is implemented on-chip with a variable temperature difference heating circuit.Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor Rc with a resistance value of 748.21Ωand a temperature coefficient of resistance of 3.037×10−3℃^(−1) at 25℃.Experimental validation demonstrates that within an ambient temperature range of 0–50℃ and a flow range of 0-10 m/s,the temperature drift of the sensor is reduced to±1.6%,as compared to±8.9%observed in a counterpart with the constant temperature difference circuit.Therefore,this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings.
文摘A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.