期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Large solar energetic particle event that occurred on 2012 March 7 and its VDA analysis 被引量:1
1
作者 Liu-Guan Ding Xin-Xin Cao +1 位作者 Zhi-Wei Wang Gui-Ming Le 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第8期33-42,共10页
On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (... On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft (e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle (SEP) event in Solar Cycle 24. Two successive coronal mass ejections (CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, but the second one was not involved. Using velocity dispersion analysis (VDA), we find that for a well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B (STB) for protons and electrons have a distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and STB. Also, the VDA method seems to only obtain reasonable results at well-connected locations and the inferred release times of energetic particles in different energy channels are similar. We suggest that good-connection is crucial for obtaining both an accurate release time and path length simultaneously, agreeing with the modeling result of Wang & Qin (2015). 展开更多
关键词 SUN particle emission -- Sun coronal mass ejection (CME) -- method velocity dispersionanalysis (VDA)
在线阅读 下载PDF
The inversion of the real kinematic properties of coronal mass ejections by forward modeling 被引量:3
2
作者 You Wu 1 and Peng-Fei Chen 1,2 1 Department of Astronomy,Nanjing University,Nanjing 210093,China 2 Key Lab of Modern Astron.and Astrophys.,Ministry of Education,Nanjing 210093,China 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第2期237-244,共8页
Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.S... Kinematic properties of coronal mass ejections (CMEs) suffer from projection effects,and it is expected that the real velocity should be larger and the real angular width should be smaller than the apparent values.Several attempts have been taken to correct the projection effects,which however led to an inflated average velocity probably due to the biased choice of CME events.In order to estimate the overall influence of the projection effects on the kinematic properties of the CMEs,we perform a forward modeling of real distributions of CME properties,such as the velocity,the angular width,and the latitude,by requiring their projected distributions to best match observations.Such a matching is conducted by Monte Carlo simulations.According to the derived real distributions,we found that (1) the average real velocity of all non-full-halo CMEs is about 514 km s-1,and the average real angular width is about 33°,in contrast to the corresponding apparent values of 418 km s-1 and 42.7° in observations;(2) For the CMEs with the angular width in the range of 20°-120°,the average real velocity is 510 km s-1 and the average real angular width is 43.4°,in contrast to the corresponding apparent values of 392 km s-1 and 52° in observations. 展开更多
关键词 Sun: coronal mass ejections cmes -- methods: statistical -- methods:numerical
在线阅读 下载PDF
Why are halo coronal mass ejections faster? 被引量:3
3
作者 Qing-Min Zhang Yang Guo +2 位作者 Peng-Fei Chen Ming-De Ding Cheng Fang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2010年第5期461-472,共12页
Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs t... Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light inten-sity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of "detectable" halo CMEs is ~922km s -1, very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed. 展开更多
关键词 Sun: coronal mass ejections cmes Sun: activity methods: nu-merical solar-terrestrial relations
在线阅读 下载PDF
Energy spectral property in an isolated CME-driven shock
4
作者 Xin Wang Yi-Hua Yan +2 位作者 Ming-De Ding Na Wang Hao Shan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第2期105-112,共8页
Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational e... Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property. 展开更多
关键词 acceleration of particles -- shock waves -- Sun coronal mass ejections cmes -- solar wind-- methods NUMERICAL
在线阅读 下载PDF
Analysis of the CME-driven shock from the SEP event that occurred on 2006 December 14
5
作者 Xin Wang Yi-Hua Yan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2012年第11期1535-1548,共14页
In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive ... In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive shock acceleration is an efficient mechanism for particle acceleration. For investigating the shock structure, the energy injection and energy spectrum ofa CME-driven shock, we perform a dynamical Monte Carlo simulation of the CME-driven shock that occurred on 2006 December 14 using an anisotropic scattering law. The simulated results of the shock's fine structure, par- ticle injection, and energy spectrum are presented. We find that our simulation results give a good fit to the observations from multiple spacecraft. 展开更多
关键词 acceleration of particles -- shock waves -- Sun: coronal mass ejections(cmes -- solar wind -- methods: numerical
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部