The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical lin...The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical line with its length indicating the bandwidth(70-130 kHz).The horizontal error bars signify the end time uncertainty.The vertical dashed line marks the SGRE end(06:28 UT,September 7);the horizontal dashed line represents the gamma-ray background.The shock arrival time at 1 au is labeled“SH”(Gopalswamy et al.2018).展开更多
Decameter-hectometric(DH)Type Ⅱ bursts,arising from coronal mass ejection(CME)-driven shock waves,are crucial for understanding solar-terrestrial interactions and space weather forecasting.This study provides a compr...Decameter-hectometric(DH)Type Ⅱ bursts,arising from coronal mass ejection(CME)-driven shock waves,are crucial for understanding solar-terrestrial interactions and space weather forecasting.This study provides a comprehensive statistical analysis of CMEs associated with DH type Ⅱ solar radio bursts during Solar Cycle 24(2009–2019),utilizing data from the Wind/WAVES,Solar TErrestrial RElations Observatory/SWAVES,and Solar and Heliospheric Observatory/LASCO catalogs.Analyzing 180 events,we report key spectral and kinematic properties,including a mean CME speed of(1058±531)km s^(−1) and a mean width of(288.39±99.3),with 62%classified as halo CMEs.About 12%of the total CMEs are accelerated,58%of them are decelerated,and 30%of them are constant.Similarly,CMEs having a speed≤800 km s^(−1) are constant,and those with speed≥800 km s^(−1) are decelerated.DH type Ⅱ bursts displayed a mean starting frequency of(12,169.72±4939)kHz,ending frequency of(2152.69±3022.07)kHz,bandwidth of(10,017±5353)kHz,and an average duration of(345.62±453)minutes.A power-law relationship was established between the drift rate(df/dt)and burst duration(D),characterized by df/dt=2749.07·D^(−0.88),highlighting the inverse dependence of drift rate on burst longevity.This suggests a dynamic interplay between shock parameters and the ambient solar corona.The findings underscore the persistent and robust spectral coverage of CME-driven shocks,offering new insights into their evolution and impact on the heliospheric environment.展开更多
The objective of this article was to carry out a statistical study of the occurrences of CMEs from solar cycles 23 and 24 and to deduce interpretations as a contribution to a greater understanding of heliosphere dynam...The objective of this article was to carry out a statistical study of the occurrences of CMEs from solar cycles 23 and 24 and to deduce interpretations as a contribution to a greater understanding of heliosphere dynamics. Thus, from the statistical examination of the occurrences according to the phases it appeared that solar cycle 23 (SC23) counted 13207 occurrences of CMEs while 16510 were counted for solar cycle 24 (SC24). These occurrences of CMEs are correlated to the sunspot cycle because in each of these cycles we would note the predominance of the phase maximum (1478 for SC23 and 2338 for SC24) over the ascending phases (550 for SC23 and 1559 for the SC24) and descending (1197 for the SC23 and 1178 for the SC24) and these predominate on the minimum phase (206 for the SC23 and 834 for the SC24). However, the percentages per phase in each cycle show that SC23 was only predominant over SC24 at the maximum phase (43.08% for SC23 and 39.57% for SC24). From this correlation, some authors therefore suggest that the toroidal magnetic field would be the cause of the ejections of these CMEs. The annual statistical examination confirms the correlation with the sunspot cycle but nevertheless reveals in the descending phase of SC23 two unusual peaks in 2005 and 2007 and a drop-in sunspot activity of 42% from SC23 to SC24 while that we would note an increase in the activity of CME occurrences of 36% at SC24, thus suggesting that CMEs can occur without the toroidal magnetic field being the cause, particularly from the coronal holes. The seasonal statistical examination shows for its part that out of the total of 29717 occurrences of CMEs of the two cycles that spring (28%) was the most active than summer (25%) and summer over autumn (24%) and finally autumn over winter (23%) thus revealing that: The ascending phase of the cycle was only the most active during the winter seasons in spring and the descending phase only during the rest of the seasons. Finally, the monthly statistical examination of the occurrences of CMEs corroborates the seasonal statistical examination by the presence of two maximum peaks (May and October) and two minimum peaks (February and August).展开更多
太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到...太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E≥10 MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E≥10 MeV质子的强度只与相关太阳耀斑和CME有关.展开更多
文摘The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical line with its length indicating the bandwidth(70-130 kHz).The horizontal error bars signify the end time uncertainty.The vertical dashed line marks the SGRE end(06:28 UT,September 7);the horizontal dashed line represents the gamma-ray background.The shock arrival time at 1 au is labeled“SH”(Gopalswamy et al.2018).
基金supported by the National Key R&D Program of China(2021YFA1600500 and 2021YFA1600503)sponsored by the CAS-TWAS President Fellowship Programpartially supported by the Tianchi Talent Program of the Xinjiang Uygur Autonomous Region of China.
文摘Decameter-hectometric(DH)Type Ⅱ bursts,arising from coronal mass ejection(CME)-driven shock waves,are crucial for understanding solar-terrestrial interactions and space weather forecasting.This study provides a comprehensive statistical analysis of CMEs associated with DH type Ⅱ solar radio bursts during Solar Cycle 24(2009–2019),utilizing data from the Wind/WAVES,Solar TErrestrial RElations Observatory/SWAVES,and Solar and Heliospheric Observatory/LASCO catalogs.Analyzing 180 events,we report key spectral and kinematic properties,including a mean CME speed of(1058±531)km s^(−1) and a mean width of(288.39±99.3),with 62%classified as halo CMEs.About 12%of the total CMEs are accelerated,58%of them are decelerated,and 30%of them are constant.Similarly,CMEs having a speed≤800 km s^(−1) are constant,and those with speed≥800 km s^(−1) are decelerated.DH type Ⅱ bursts displayed a mean starting frequency of(12,169.72±4939)kHz,ending frequency of(2152.69±3022.07)kHz,bandwidth of(10,017±5353)kHz,and an average duration of(345.62±453)minutes.A power-law relationship was established between the drift rate(df/dt)and burst duration(D),characterized by df/dt=2749.07·D^(−0.88),highlighting the inverse dependence of drift rate on burst longevity.This suggests a dynamic interplay between shock parameters and the ambient solar corona.The findings underscore the persistent and robust spectral coverage of CME-driven shocks,offering new insights into their evolution and impact on the heliospheric environment.
文摘The objective of this article was to carry out a statistical study of the occurrences of CMEs from solar cycles 23 and 24 and to deduce interpretations as a contribution to a greater understanding of heliosphere dynamics. Thus, from the statistical examination of the occurrences according to the phases it appeared that solar cycle 23 (SC23) counted 13207 occurrences of CMEs while 16510 were counted for solar cycle 24 (SC24). These occurrences of CMEs are correlated to the sunspot cycle because in each of these cycles we would note the predominance of the phase maximum (1478 for SC23 and 2338 for SC24) over the ascending phases (550 for SC23 and 1559 for the SC24) and descending (1197 for the SC23 and 1178 for the SC24) and these predominate on the minimum phase (206 for the SC23 and 834 for the SC24). However, the percentages per phase in each cycle show that SC23 was only predominant over SC24 at the maximum phase (43.08% for SC23 and 39.57% for SC24). From this correlation, some authors therefore suggest that the toroidal magnetic field would be the cause of the ejections of these CMEs. The annual statistical examination confirms the correlation with the sunspot cycle but nevertheless reveals in the descending phase of SC23 two unusual peaks in 2005 and 2007 and a drop-in sunspot activity of 42% from SC23 to SC24 while that we would note an increase in the activity of CME occurrences of 36% at SC24, thus suggesting that CMEs can occur without the toroidal magnetic field being the cause, particularly from the coronal holes. The seasonal statistical examination shows for its part that out of the total of 29717 occurrences of CMEs of the two cycles that spring (28%) was the most active than summer (25%) and summer over autumn (24%) and finally autumn over winter (23%) thus revealing that: The ascending phase of the cycle was only the most active during the winter seasons in spring and the descending phase only during the rest of the seasons. Finally, the monthly statistical examination of the occurrences of CMEs corroborates the seasonal statistical examination by the presence of two maximum peaks (May and October) and two minimum peaks (February and August).
文摘太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E≥10 MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E≥10 MeV质子的强度只与相关太阳耀斑和CME有关.