This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv...This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.展开更多
基金supported by the National Natural Science Foundation of China Excellence Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)the National Key R&D Program of China(Grant No.2023YFA1008901)+1 种基金the National Nat-ural Science Foundation of China(Grant No.12172009)supported by“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.