全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CM...全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。展开更多
Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China M...Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.展开更多
文摘全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2021JC0009)the Natural Science Foundation of China(Grant Nos.U2142212 and 42105136)。
文摘Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.