期刊文献+
共找到283,001篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient multi-objective CMA-ES algorithm assisted by knowledge-extraction-based variable-fidelity surrogate model
1
作者 Zengcong LI Kuo TIAN +1 位作者 Shu ZHANG Bo WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期213-232,共20页
To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is prese... To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is presented. In the first part, the KE-VFS model is established. Firstly, the optimization is performed using the low-fidelity surrogate model to obtain the Low-Fidelity Non-Dominated Solutions(LF-NDS). Secondly, aiming to obtain the High-Fidelity(HF) sample points located in promising areas, the K-means clustering algorithm and the space-filling strategy are used to extract knowledge from the LF-NDS to the HF space. Finally,the KE-VFS model is established by means of the obtained HF and LF sample points. In the second part, a novel model management based on the Modified Hypervolume Improvement(MHVI) criterion and pre-screening strategy is proposed. In each generation of KE-VFS-CMA-ES, excessive candidate points are firstly generated and then calculated by the MHVI criterion to find out a few potential points, which will be evaluated by the HF model. Through the above two parts,the promising areas can be detected and the potential points can be screened out, which contributes to speeding up the optimization process twofold. Three classic benchmark functions and a time-consuming engineering case of the aerospace integrally stiffened shell are studied, and results illustrate the excellent efficiency, robustness and applicability of KE-VFS-CMA-ES compared with other four known multi-objective optimization algorithms. 展开更多
关键词 Covariance matrix adaptation evolution strategy Model management Multi-objective optimization Surrogate-assisted evolutionary algorithm Variable-fidelity surrogate model
原文传递
基于CMA-ES算法的集成光学陀螺中弯曲波导损耗优化
2
作者 黄腾超 蒋知佑 +3 位作者 赵薪然 张义 赵子强 梁璀 《中国惯性技术学报》 北大核心 2025年第6期601-606,共6页
片上集成敏感环圈是集成光学陀螺仪的基本组成部分之一,其环长直接决定陀螺仪的零偏稳定性和角度随机游走。传感环的直波导传输损耗和弯曲波导辐射损耗共同决定了敏感环圈的最终品质。优化弯曲波导的结构以降低其辐射损耗是提高片上集... 片上集成敏感环圈是集成光学陀螺仪的基本组成部分之一,其环长直接决定陀螺仪的零偏稳定性和角度随机游走。传感环的直波导传输损耗和弯曲波导辐射损耗共同决定了敏感环圈的最终品质。优化弯曲波导的结构以降低其辐射损耗是提高片上集成陀螺仪性能的关键技术之一。通过引入CMA-ES算法设计片上集成传感环上的90°弯曲波导结构,对弯曲波导的几何参数进行了全局空间下的有效优化。仿真结果表明,对于截面3μm×0.15μm的90°氮化硅弯曲波导,在弯曲半径达到200μm以上时可以将弯曲波导的损耗优化降低至10^(-4)d B/90°的水平。证明了CMA-ES算法可以有效优化片上集成传感环的设计、降低其损耗,从而提升集成光学陀螺仪的性能指标,具有工程应用价值。 展开更多
关键词 cma-es算法 集成光学陀螺 弯曲光波导
在线阅读 下载PDF
基于CMA-ES算法的无人机群协同救援任务分配优化 被引量:1
3
作者 俞佳晨 胡剑虹 郑恩辉 《现代电子技术》 北大核心 2025年第10期92-96,共5页
救援任务分配不仅要考虑无人机的航行路程最短,还要尽可能减少幸存者的平均等待时间,这是一个多目标优化问题。为在多目标中寻找最优解决方案,提出一种基于协方差矩阵自适应进化策略(CMA-ES)算法的无人机群协同救援任务分配优化方法。... 救援任务分配不仅要考虑无人机的航行路程最短,还要尽可能减少幸存者的平均等待时间,这是一个多目标优化问题。为在多目标中寻找最优解决方案,提出一种基于协方差矩阵自适应进化策略(CMA-ES)算法的无人机群协同救援任务分配优化方法。以平均等待时间和航行路程最短为目标函数,考虑无人机的最大航行距离、任务数量、协同规划和载重能力等约束条件,使用CMA-ES算法,通过多维空间中基于正态分布的参数优化机制寻找目标函数最优解,有效解决了不同目标之间的冲突,实现了多目标任务分配优化。实验结果表明:所提方法能合理分配救援任务,确保幸存者快速获得物资,无人机平均航行48.7 km,幸存者平均等待33.4 min,救援任务平均61.2 min完成。 展开更多
关键词 cma-es 无人机 协同任务分配 优化算法 目标函数 约束条件 最大航程
在线阅读 下载PDF
基于CMA-ES的储能容量规划策略研究
4
作者 徐豪 《通讯世界》 2025年第7期97-99,共3页
为解决高比例新能源场景下储能经济性与技术性能的协同优化问题,基于协方差矩阵自适应进化算法(covariance matrix adaptation-evolution strategy,CMA-ES)的特点,研究其在储能容量规划领域的应用策略。基于历史负荷数据与新能源出力特... 为解决高比例新能源场景下储能经济性与技术性能的协同优化问题,基于协方差矩阵自适应进化算法(covariance matrix adaptation-evolution strategy,CMA-ES)的特点,研究其在储能容量规划领域的应用策略。基于历史负荷数据与新能源出力特性,构建以经济效益最优为目标的混合整数规划模型,结合改进的CMA-ES动态规划算法,对电力系统小微型分布式储能进行容量规划配置,探讨算法应用流程,以提高储能建设效益。 展开更多
关键词 储能系统 容量规划 cma-es算法
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
5
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
6
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
7
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
8
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
9
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
CMA-ES算法优化网络安全态势预测模型 被引量:13
10
作者 杨明 胡冠宇 刘倩 《哈尔滨理工大学学报》 CAS 北大核心 2017年第2期140-144,共5页
针对网络安全态势预测问题,提出了一种预测方法。该方法采用协方差矩阵自适应进化策略(CMA-ES)算法来优化径向基神经网络(RBF)预测模型中的参数,使得RBF预测模型具备更好的泛化能力,可以快速的找出复杂时间序列中的规律。仿真实验结果表... 针对网络安全态势预测问题,提出了一种预测方法。该方法采用协方差矩阵自适应进化策略(CMA-ES)算法来优化径向基神经网络(RBF)预测模型中的参数,使得RBF预测模型具备更好的泛化能力,可以快速的找出复杂时间序列中的规律。仿真实验结果表明,采用CMA-ES优化的RBF预测模型能够准确预测出一段时间内的网络安全态势值,预测精度高于传统预测手段。 展开更多
关键词 网络安全态势预测 cma-es优化算法 RBF神经网络 时间序列预测
在线阅读 下载PDF
基于CMA-ES算法的面向任务的机器人结构优化 被引量:2
11
作者 林煌杰 翟敬梅 《组合机床与自动化加工技术》 北大核心 2021年第5期18-21,26,共5页
为了解决指定任务的机器人结构设计问题,将任务要求和相关性能指标纳入到机器人结构设计过程中,提出了一种面向任务的机器人结构(DH参数)优化设计方法。首先,将指定任务描述为笛卡尔空间中一系列位姿点,姿态用四元素表示;其次,根据机器... 为了解决指定任务的机器人结构设计问题,将任务要求和相关性能指标纳入到机器人结构设计过程中,提出了一种面向任务的机器人结构(DH参数)优化设计方法。首先,将指定任务描述为笛卡尔空间中一系列位姿点,姿态用四元素表示;其次,根据机器人运动学特性,推导出任务可达性约束条件,用各向同性指标、关节角度指标、尺寸指标构建目标函数,将机器人DH参数和到达各任务点时的关节值作为设计变量,从而建立了机器人结构优化设计的数学模型,并进一步利用罚函数法处理可达性约束;最后,根据优化问题具有非线性、不可导、高维度和连续值优化的特性,选用CMA-ES(协方差矩阵自适应进化策略)进行机器人结构优化设计问题的求解。实例仿真通过模拟一个位姿不断变化的复杂作业场景,验证了该方法的有效性。 展开更多
关键词 机器人 面向任务设计 结构优化 性能指标 cma-es算法
在线阅读 下载PDF
基于CMA-ES算法的支持向量机模型选择 被引量:2
12
作者 周文杰 徐勇 《计算机仿真》 CSCD 北大核心 2010年第4期163-166,共4页
研究模型选择对支持向量机(SVM)的泛化性能有着重要影响。针对传统梯度算法对初始值敏感及网格搜索法计算复杂的缺点,为了提高全面优化能力和分类精度,提出了一种基于协方差矩阵自适应进化策略(CMA-ES)的支持向量机(SVM)模型优化算法,... 研究模型选择对支持向量机(SVM)的泛化性能有着重要影响。针对传统梯度算法对初始值敏感及网格搜索法计算复杂的缺点,为了提高全面优化能力和分类精度,提出了一种基于协方差矩阵自适应进化策略(CMA-ES)的支持向量机(SVM)模型优化算法,通过对SVM泛化性能界(Bounds on Generalization Performance)的优化求解,实现了基于CMA-ES算法的SVM模型选择。在标准数据集上的实验结果表明:相比遗传算法和梯度算法,上述方法能够在较小计算代价下得到更优的超参数,提高支持向量机的预测精度稳定性,尤其适合大样本数据条件下的模型选择。 展开更多
关键词 支持向量机 进化算法 参数选择 协方差矩阵自适应进化策略
在线阅读 下载PDF
改进CMA-ES算法及其在7自由度仿人臂逆运动学求解中的应用 被引量:6
13
作者 肖帆 李光 +3 位作者 杨加超 章晓峰 马祺杰 袁鹰 《机械科学与技术》 CSCD 北大核心 2020年第6期844-851,共8页
提出一种改进的CMA-ES算法:将原算法随机生成初始均值点,改为由佳点集中优秀个体加权求和得到;增加越界敏感因子和步长缩放系数,用于新个体存在越界行为时,修正步长更新。以7自由度仿人臂为例,用改进的CMA-ES算法求逆运动学解,结果表明... 提出一种改进的CMA-ES算法:将原算法随机生成初始均值点,改为由佳点集中优秀个体加权求和得到;增加越界敏感因子和步长缩放系数,用于新个体存在越界行为时,修正步长更新。以7自由度仿人臂为例,用改进的CMA-ES算法求逆运动学解,结果表明改进的CMA-ES算法可实时、高精度地求解:在点对点运动中,改进的算法单次求解时间约为9.7 ms,适应度函数稳定在10^-8级别;在工作空间的连续轨迹中,位置跟踪误差稳定在10^-5 mm级别,单次平均求解时间约为14.1 ms。 展开更多
关键词 cma-es 7自由度仿人臂 逆运动学 实时 高精度
在线阅读 下载PDF
改进适应度函数的CMA-ES算法在机器人逆运动学中的应用 被引量:2
14
作者 谭薪兴 李光 +2 位作者 薛晨慷 易静 于权伟 《智能计算机与应用》 2022年第2期18-23,31,共7页
针对机器人的逆运动学多解问题,本文利用“最佳柔顺性”规则,对适应度函数进行改进,提出了一种自适应协方差矩阵进化策略(CMA-ES)算法求逆运动学解的新方法。在原算法的基础上,将机器人各关节运动范围作为约束条件,在工作空间中获得唯... 针对机器人的逆运动学多解问题,本文利用“最佳柔顺性”规则,对适应度函数进行改进,提出了一种自适应协方差矩阵进化策略(CMA-ES)算法求逆运动学解的新方法。在原算法的基础上,将机器人各关节运动范围作为约束条件,在工作空间中获得唯一且平稳光滑的路径。以REBot-V-6R-6500型6自由度机器人为研究算例,结果表明:在点对点运动的逆运动学求解中,代表位置误差的适应度函数的平均值稳定在10^(-17)数量级;在空间螺旋轨迹连续跟踪的逆运动学求解中,求解的各关节轨迹平滑且唯一,代表位置误差的适应度函数的平均值稳定在10^(-32)数量级;在点对点运动和连续轨迹跟踪的逆运动学求解中,位置平均误差值均稳定在10^(-16)m数量级。 展开更多
关键词 机器人 逆运动学 cma-es算法 最佳柔顺性
在线阅读 下载PDF
基于CMA-ES的USV自动靠泊研究
15
作者 殷键 陈国权 杨神化 《舰船科学技术》 北大核心 2024年第7期81-87,共7页
本文提出基于CMA-ES优化的LQR船舶自主靠泊控制系统,系统化地解决船舶在靠泊过程中涉及的路径规划、最优控制、外界干扰、物理执行结构约束等问题并使用仿真软件实现基于LQR以及基于CMA-ES优化的LQR的自主靠泊控制系统,实验结果表明,基... 本文提出基于CMA-ES优化的LQR船舶自主靠泊控制系统,系统化地解决船舶在靠泊过程中涉及的路径规划、最优控制、外界干扰、物理执行结构约束等问题并使用仿真软件实现基于LQR以及基于CMA-ES优化的LQR的自主靠泊控制系统,实验结果表明,基于CMA-ES的优化控制方法能够很好地实现小型船舶的自主靠泊,系统鲁棒性表现良好。 展开更多
关键词 自主靠泊 cma-es LQR USV
在线阅读 下载PDF
基于改进CMA-ES的双足机器人踢球算法设计
16
作者 周鼎宇 梁志伟 《计算机与数字工程》 2023年第9期2013-2018,共6页
针对RoboCup比赛中足球机器人在动态环境下的进攻速度缓慢、踢球成功率低的问题,采用改进的协方差自适应进化策略(CMA-ES)的算法法设计了一种双足机器人踢球算法。首先,针对CMA-ES算法本身易于陷入局部最优解的缺点,引入了Tent混沌映射... 针对RoboCup比赛中足球机器人在动态环境下的进攻速度缓慢、踢球成功率低的问题,采用改进的协方差自适应进化策略(CMA-ES)的算法法设计了一种双足机器人踢球算法。首先,针对CMA-ES算法本身易于陷入局部最优解的缺点,引入了Tent混沌映射和莱维飞行随机数结合的方法,拓展算法的搜索范围,增加种群粒子数,增强算法的全局探索力;利用改进后的CMA-ES算法优化踢球参数,并用逆运动学方法评价参数的可行性;同时采用踢球代价函数确定最佳踢球点的坐标,并引入贝塞尔曲线插值方法进行轨迹优化。最后通过SimRobot仿真实验和NAO机器人实体对比实验,验证了该方法的正确性和有效性。 展开更多
关键词 双足机器人 cma-es 逆运动学 贝塞尔曲线 混沌映射
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
17
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
18
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
19
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
20
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部