The quality of surface water is rapidly changing due to climatic variations, natural processes, and anthropogenic activities. The objectives of this study were to classify and analyze the surface water quality of 12 m...The quality of surface water is rapidly changing due to climatic variations, natural processes, and anthropogenic activities. The objectives of this study were to classify and analyze the surface water quality of 12 major rivers of Alberta on the basis of 17 parameters during the period of five years (i.e., 2004-2008) using principal component analysis (PCA), total exceedance model and clustering technique. Seven major principal components (PCs) with variability of about 89% were identified. These PCs were the indicators of watershed geology, mineralization and anthropogenic activities related to land use/cover. The seven dominant parameters revealed from the seven PCs were total dissolved solids (TDS), true color (TC), pH, iron (Fe), fecal coliform (FC), dissolved oxygen (DO), and turbidity (TUR). The normalized data of dominant parameters were used to develop a model for obtaining total exceedance. The exceedance values acquired from the total exceedance model were used to determine the patterns for the development of five clusters. The performance of the clusters was compared with the classes obtained in Canadian Water Quality Index (CWQI). Cluster 1, cluster 2, cluster 3, cluster 4 and cluster 5 showed agreements of 85.71%, 83.54%, 90.22%, 80.74%, and 83.40% with their respective CWQI classes on the basis of the data for all rivers during 2004-2008. The water quality was deteriorated in growing season due to snow melting. This methodology could be applied to classify the raw surface water quality, analyze the spatio-temporal trends and study the impacts of the factors affecting the water quality anywhere in the world.展开更多
Materials showing metallophilic interactions continue to attract considerable theoretical and experimental attention largely because of their unusual and unanticipated photophysical behavior as well as their unique st...Materials showing metallophilic interactions continue to attract considerable theoretical and experimental attention largely because of their unusual and unanticipated photophysical behavior as well as their unique stimuli-responsive behavior in an aggregate or solid state.Metallophilic interactions are mostly found between metals with either identical(d^(10)–d^(10))or different(s^(2)–d^(8),d^(8)–d^(10))configurations.Among various metallophilic interactions,aurophilic interactions(Au⋯Au)are well-known and widely reported.In this study,a new phosphorescent gold(I)complex,[(CF_(3)Ph)_(3)PAuC≡CPh](TPPGPA)was reported.展开更多
Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully construct...Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving e...Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving efficient volatile organic compounds and CO emission control.The subnano cluster catalyst can not only provide catalytic sites with multiple metal atoms,but also maintain full utilization efficiency.Almost all metal atoms in highly dispersed clusters can be used for adsorption and conversion of reactants.Recently,various types of sub-nano clusters,including subnano cluster oxides,have been developed and demonstrated excellent performance in low-temperature gas-phase pollutants combustion.In this mini review,we systematically summarize the structure,physicochemical properties,characterization,and applications of sub-nano cluster catalysts in catalytic oxidation of CO,methane,propane,propylene,toluene and its derivatives,formaldehyde and chlorinated volatile organic compounds.Finally,we have analyzed and discussed the problems and challenges faced by sub-nano cluster catalysts in both basic research and practical applications,providing a scientific basis for the design,synthesis,and application of efficient heterogeneous catalysts for CO and VOCs oxidation.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Pro...Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Province.Its cargo throughput has consistently ranked first globally for many years,and its container volume growth ranks second globally,forming a port cluster covering the entire industrial chain.展开更多
The oxygen reduction reaction(ORR)critical for electrochemical energy conversion systems suffers from sluggish kinetics and high overpotentials that hinder the efficiency of these technologies.Herein,a curvature-domin...The oxygen reduction reaction(ORR)critical for electrochemical energy conversion systems suffers from sluggish kinetics and high overpotentials that hinder the efficiency of these technologies.Herein,a curvature-dominated microenvironment modulation strategy is demonstrated to enhance ORR performance via engineering a helical hollow carbon nanotube with embedded sub-nanometer tungsten nitride(W_(2)N)clusters.This architecture yields optimized electrostatic field distributions and reduced d-band center of W_(2)N,thereby promoting the enrichment of OH-,the adsorption of oxygen,and the desorption of oxygen intermediates(OH).The catalyst shows remarkable ORR activity with a high onset potential of 1.00 V and a half-wave potential of 0.89 V,outperforming both Pt/C and other W_(2)N-based catalysts.Theoretical calculations verify that the curved support enhances the electron delocalization within the W_(2)N clusters,regulating the interaction between the catalyst and reactants.Our findings establish a general design principle of curvature-induced microenvironment modulation and offer a new pathway toward designing efficient electrocatalysts for sustainable energy storage applications.展开更多
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese...In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.展开更多
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl...Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.展开更多
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a...Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.展开更多
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell...Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.展开更多
The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxi...The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.展开更多
Objectives To identify core symptoms and symptom clusters in patients with neuromyelitis optica spectrum disorder(NMOSD)by network analysis.Methods From October 10 to 30,2023,140 patients with NMOSD were selected to p...Objectives To identify core symptoms and symptom clusters in patients with neuromyelitis optica spectrum disorder(NMOSD)by network analysis.Methods From October 10 to 30,2023,140 patients with NMOSD were selected to participate in this online questionnaire survey.The survey tools included a general information questionnaire and a self-made NMOSD symptoms scale,which included the prevalence,severity,and distress of 29 symptoms.Cluster analysis was used to identify symptom clusters,and network analysis was used to analyze the symptom network and node characteristics and central indicators including strength centrality(r_(s)),closeness centrality(r_(c))and betweeness centrality(r_(b))were used to identify core symptoms and symptom clusters.Results The most common symptom was pain(65.7%),followed by paraesthesia(65.0%),fatigue(65.0%),easy awakening(63.6%).Regarding the burden level of symptoms,pain was the most burdensome symptom,followed by paraesthesia,easy awakening,fatigue,and difficulty falling asleep.Six clusters were identified:somatosensory,motor,visual,and memory symptom clusters,bladder and rectum symptom clusters,sleep symptoms clusters,and neuropsychological symptom clusters.Fatigue(r_(s)=12.39,r_(b)=68.00,r_(c)=0.02)was the most central and prominent bridge symptom,and motor symptom cluster(r_(s)=2.68,r_(c)=0.10)was the most central symptom cluster among the six clusters.Conclusions Our study demonstrated the necessity of symptom management targeting fatigue,pain,and motor symptom cluster in patients with NMOSD.展开更多
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec...In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes.展开更多
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,...A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
Given customizable crystal structure and intriguing optical properties,lanthanide titanium-oxygen clusters(LTOCs)with atomic-level accuracy have gained a lot of interest.In this study,we prepared[Ln_(9)Ti_(2)(μ4-O)(...Given customizable crystal structure and intriguing optical properties,lanthanide titanium-oxygen clusters(LTOCs)with atomic-level accuracy have gained a lot of interest.In this study,we prepared[Ln_(9)Ti_(2)(μ4-O)(μ3-OH)_(14)(acac)_(17)(CH_(3)O)_(2)(CH_(3)OH)_(3)](Ln=Tb_(x)Eu_(9−x)(x=0,4,6,7,8,9),Hacac=acetylacetone),Tb^(3+)and Eu^(3+)co-doped LTOCs,to modify the optical properties for the luminescence thermometer.In detail,the serial LTOCs display dual characteristic emission peaks of ^(5)D_(4)→^(7)F_(5) for Tb^(3+)and^(5)D_(0)→^(7)F_(2) for Eu^(3+)at 548 and 616 nm,respectively,under 330 nm excitation.Effective energy transfer(ET)between Tb^(3+)ions and Eu^(3+)ions was revealed in terms of both emission spectra and luminescence lifetime.The ^(5)D_(0)→^(7)F_(2) emission intensity of Eu^(3+)ions at 616 nm is maximally enhanced(by a factor of 11.2)with a change in the relative molar ratio of Tb^(3+)to Eu^(3+),along with a change in the ET efficiency of Tb^(3+)→Eu^(3+).In addition,the luminescent color changes from red,orange,yellow,to green.This precise control of the ET process between rare-earth ions allows{Tb_(6)Eu_(3)Ti_(2)}to reach a maximum relative sensitivity of 1.241 K^(−1) at 355 K,which is an enhancement of up to 4.6-fold with respect to the previously reported homonuclear emission,holding great potential in the optical thermometers.展开更多
文摘The quality of surface water is rapidly changing due to climatic variations, natural processes, and anthropogenic activities. The objectives of this study were to classify and analyze the surface water quality of 12 major rivers of Alberta on the basis of 17 parameters during the period of five years (i.e., 2004-2008) using principal component analysis (PCA), total exceedance model and clustering technique. Seven major principal components (PCs) with variability of about 89% were identified. These PCs were the indicators of watershed geology, mineralization and anthropogenic activities related to land use/cover. The seven dominant parameters revealed from the seven PCs were total dissolved solids (TDS), true color (TC), pH, iron (Fe), fecal coliform (FC), dissolved oxygen (DO), and turbidity (TUR). The normalized data of dominant parameters were used to develop a model for obtaining total exceedance. The exceedance values acquired from the total exceedance model were used to determine the patterns for the development of five clusters. The performance of the clusters was compared with the classes obtained in Canadian Water Quality Index (CWQI). Cluster 1, cluster 2, cluster 3, cluster 4 and cluster 5 showed agreements of 85.71%, 83.54%, 90.22%, 80.74%, and 83.40% with their respective CWQI classes on the basis of the data for all rivers during 2004-2008. The water quality was deteriorated in growing season due to snow melting. This methodology could be applied to classify the raw surface water quality, analyze the spatio-temporal trends and study the impacts of the factors affecting the water quality anywhere in the world.
基金supported by the National Natural Science Foundation of China(no.21788102)the Natural Science Foundation of Guangdong Province(nos.2019B121205002 and 2019B030301003)+1 种基金the Research Grants Council of Hong Kong(nos.16305618,16305518,16304819,C6009-17G,and C6014-20W)the Innovation and Technology Commission(no.ITC-CNERC14SC01).
文摘Materials showing metallophilic interactions continue to attract considerable theoretical and experimental attention largely because of their unusual and unanticipated photophysical behavior as well as their unique stimuli-responsive behavior in an aggregate or solid state.Metallophilic interactions are mostly found between metals with either identical(d^(10)–d^(10))or different(s^(2)–d^(8),d^(8)–d^(10))configurations.Among various metallophilic interactions,aurophilic interactions(Au⋯Au)are well-known and widely reported.In this study,a new phosphorescent gold(I)complex,[(CF_(3)Ph)_(3)PAuC≡CPh](TPPGPA)was reported.
文摘Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the National Natural Science Foundation of China(No.22506042)the Natural Science Foundation of Henan Province(Nos.252300421710 and 252300421552)the High level Talent Research Launch Fund of Henan University of Technology(No.2024BS061).
文摘Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving efficient volatile organic compounds and CO emission control.The subnano cluster catalyst can not only provide catalytic sites with multiple metal atoms,but also maintain full utilization efficiency.Almost all metal atoms in highly dispersed clusters can be used for adsorption and conversion of reactants.Recently,various types of sub-nano clusters,including subnano cluster oxides,have been developed and demonstrated excellent performance in low-temperature gas-phase pollutants combustion.In this mini review,we systematically summarize the structure,physicochemical properties,characterization,and applications of sub-nano cluster catalysts in catalytic oxidation of CO,methane,propane,propylene,toluene and its derivatives,formaldehyde and chlorinated volatile organic compounds.Finally,we have analyzed and discussed the problems and challenges faced by sub-nano cluster catalysts in both basic research and practical applications,providing a scientific basis for the design,synthesis,and application of efficient heterogeneous catalysts for CO and VOCs oxidation.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
文摘Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Province.Its cargo throughput has consistently ranked first globally for many years,and its container volume growth ranks second globally,forming a port cluster covering the entire industrial chain.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52302220 and 22405052)the China Postdoctoral Science Foundation(No.2024M750491).
文摘The oxygen reduction reaction(ORR)critical for electrochemical energy conversion systems suffers from sluggish kinetics and high overpotentials that hinder the efficiency of these technologies.Herein,a curvature-dominated microenvironment modulation strategy is demonstrated to enhance ORR performance via engineering a helical hollow carbon nanotube with embedded sub-nanometer tungsten nitride(W_(2)N)clusters.This architecture yields optimized electrostatic field distributions and reduced d-band center of W_(2)N,thereby promoting the enrichment of OH-,the adsorption of oxygen,and the desorption of oxygen intermediates(OH).The catalyst shows remarkable ORR activity with a high onset potential of 1.00 V and a half-wave potential of 0.89 V,outperforming both Pt/C and other W_(2)N-based catalysts.Theoretical calculations verify that the curved support enhances the electron delocalization within the W_(2)N clusters,regulating the interaction between the catalyst and reactants.Our findings establish a general design principle of curvature-induced microenvironment modulation and offer a new pathway toward designing efficient electrocatalysts for sustainable energy storage applications.
基金the National Natural Science Foundation of China(No.62063006)to the Guangxi Natural Science Foundation under Grant(Nos.2023GXNSFAA026025,AA24010001)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2023RY018)to the Special Guangxi Industry and Information Technology Department,Textile and Pharmaceutical Division(ID:2021 No.231)to the Special Research Project of Hechi University(ID:2021GCC028)to the Key Laboratory of AI and Information Processing,Education Department of Guangxi Zhuang Autonomous Region(Hechi University),No.2024GXZDSY009。
文摘In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.
基金funded by the Research Project:THTETN.05/24-25,VietnamAcademy of Science and Technology.
文摘Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications.
基金supported by the Foundation of President of Hebei University(XZJJ202303).
文摘Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments.
文摘Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.
基金supported by the National Natural Science Foundation of China(Nos.51977027 and 51967008)the Scientific and Technological Project of Yunnan Precious Metals Lab-oratory(Nos.YPML-2023050250 and YPML-2022050206).
文摘The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.
基金supported by the Specific Research Fund for Top-notch Talents of Guangdong Provincial Hospital of Chinese Medicine(No.2022KT1188).
文摘Objectives To identify core symptoms and symptom clusters in patients with neuromyelitis optica spectrum disorder(NMOSD)by network analysis.Methods From October 10 to 30,2023,140 patients with NMOSD were selected to participate in this online questionnaire survey.The survey tools included a general information questionnaire and a self-made NMOSD symptoms scale,which included the prevalence,severity,and distress of 29 symptoms.Cluster analysis was used to identify symptom clusters,and network analysis was used to analyze the symptom network and node characteristics and central indicators including strength centrality(r_(s)),closeness centrality(r_(c))and betweeness centrality(r_(b))were used to identify core symptoms and symptom clusters.Results The most common symptom was pain(65.7%),followed by paraesthesia(65.0%),fatigue(65.0%),easy awakening(63.6%).Regarding the burden level of symptoms,pain was the most burdensome symptom,followed by paraesthesia,easy awakening,fatigue,and difficulty falling asleep.Six clusters were identified:somatosensory,motor,visual,and memory symptom clusters,bladder and rectum symptom clusters,sleep symptoms clusters,and neuropsychological symptom clusters.Fatigue(r_(s)=12.39,r_(b)=68.00,r_(c)=0.02)was the most central and prominent bridge symptom,and motor symptom cluster(r_(s)=2.68,r_(c)=0.10)was the most central symptom cluster among the six clusters.Conclusions Our study demonstrated the necessity of symptom management targeting fatigue,pain,and motor symptom cluster in patients with NMOSD.
文摘In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes.
基金financial support from the National Natural Science Foundation of China(Nos.52104306,52274301,52334009)the Aeronautical Science Foundation of China(No.2023Z0530S6005)+3 种基金the National Key Research and Development Program of China(No.2023YFB3712401)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Academician Workstation of Kunming University of Science and Technology(2024),the Ningbo Yongjiang Talent-Introduction Programme(No.2022A-023-C)the Zhejiang Phenomenological Materials Technology Co.,Ltd.,China.
文摘A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金supported by the National Natural Science Foundation of China(Nos.12174151 and 12304448)the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province(No.YSPTZX202208)+3 种基金Hainan Province Clinical Medical Center(No.QWYH_(2)022341)the Key Laboratory of New Energy and Rare Earth Resource Utilization of the State People’s Committee of China(No.NERE202206)the Department of Science and Technology of Jilin Province(No.20220101059JC)the Key Laboratory of the Ministry of Education for First Aid and Trauma Research(No.KLET-202218).
文摘Given customizable crystal structure and intriguing optical properties,lanthanide titanium-oxygen clusters(LTOCs)with atomic-level accuracy have gained a lot of interest.In this study,we prepared[Ln_(9)Ti_(2)(μ4-O)(μ3-OH)_(14)(acac)_(17)(CH_(3)O)_(2)(CH_(3)OH)_(3)](Ln=Tb_(x)Eu_(9−x)(x=0,4,6,7,8,9),Hacac=acetylacetone),Tb^(3+)and Eu^(3+)co-doped LTOCs,to modify the optical properties for the luminescence thermometer.In detail,the serial LTOCs display dual characteristic emission peaks of ^(5)D_(4)→^(7)F_(5) for Tb^(3+)and^(5)D_(0)→^(7)F_(2) for Eu^(3+)at 548 and 616 nm,respectively,under 330 nm excitation.Effective energy transfer(ET)between Tb^(3+)ions and Eu^(3+)ions was revealed in terms of both emission spectra and luminescence lifetime.The ^(5)D_(0)→^(7)F_(2) emission intensity of Eu^(3+)ions at 616 nm is maximally enhanced(by a factor of 11.2)with a change in the relative molar ratio of Tb^(3+)to Eu^(3+),along with a change in the ET efficiency of Tb^(3+)→Eu^(3+).In addition,the luminescent color changes from red,orange,yellow,to green.This precise control of the ET process between rare-earth ions allows{Tb_(6)Eu_(3)Ti_(2)}to reach a maximum relative sensitivity of 1.241 K^(−1) at 355 K,which is an enhancement of up to 4.6-fold with respect to the previously reported homonuclear emission,holding great potential in the optical thermometers.