期刊文献+
共找到6,324篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
1
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 Multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
2
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Classification of forest vegetation with the application of iterative reallocation and model-based clustering
3
作者 Naghmeh Pakgohar Javad Eshaghi Rad +4 位作者 Hossein Gholami Ahmad Alijanpour David W.Roberts Attila Lengyel Enrico Feoli 《Journal of Forestry Research》 2025年第5期103-112,共10页
Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp... Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data. 展开更多
关键词 CLASSIFICATION Heuristic clustering Finite mixture Forest ecosystems Model-based clustering
在线阅读 下载PDF
Characterization and clustering of rock discontinuity sets:A review
4
作者 Changle Pu Jiewei Zhan +1 位作者 Wen Zhang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1240-1262,共23页
The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under... The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets. 展开更多
关键词 Discontinuity clustering clustering algorithms Discontinuity characterization Orientation analysis Rock mass
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
5
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 Multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
Clustering optimization strategy for cooperative positioning system aided by UAV 被引量:1
6
作者 Hongbo ZHAO Zeqi YIN Shan HU 《Chinese Journal of Aeronautics》 2025年第9期421-435,共15页
For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Veh... For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs. 展开更多
关键词 clustering optimization Cooperative positioning Locally-centralized FGO Networking wireless sensors Unmanned aerial vehicles Urban degradation environments
原文传递
Multi-Step Clustering of Smart Meters Time Series:Application to Demand Flexibility Characterization of SME Customers
7
作者 Santiago Bañales Raquel Dormido Natividad Duro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期869-907,共39页
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the... Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions. 展开更多
关键词 Electric load clustering load profiling smart meters machine learning data mining demand flexibility demand response
在线阅读 下载PDF
Clustering-based temporal deep neural network denoising method for event-based sensors
8
作者 LI Jianing XU Jiangtao GAO Jiandong 《Optoelectronics Letters》 2025年第7期441-448,共8页
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu... To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors. 展开更多
关键词 cluster centers denoising kmeans cluster centersa temporal deep neural network clustering event based sensors dbscan
原文传递
A Survey on Artificial Intelligence and Blockchain Clustering for Enhanced Security in 6G Wireless Networks
9
作者 A.F.M.Shahen Shah Muhammet Ali Karabulut +2 位作者 Abu Kamruzzaman Dalal Alharthi Phillip G.Bradford 《Computers, Materials & Continua》 2025年第8期1981-2013,共33页
The advent of 6G wireless technology,which offers previously unattainable data rates,very low latency,and compatibility with a wide range of communication devices,promises to transform the networking environment compl... The advent of 6G wireless technology,which offers previously unattainable data rates,very low latency,and compatibility with a wide range of communication devices,promises to transform the networking environment completely.The 6G wireless proposals aim to expand wireless communication’s capabilities well beyond current levels.This technology is expected to revolutionize how we communicate,connect,and use the power of the digital world.However,maintaining secure and efficient data management becomes crucial as 6G networks grow in size and complexity.This study investigates blockchain clustering and artificial intelligence(AI)approaches to ensure a reliable and trustworthy communication in 6G.First,the mechanisms and protocols of blockchain clustering that provide a trusted and effective communication infrastructure for 6G networks are presented.Then,AI techniques for network security in 6G are studied.The integration of AI and blockchain to ensure energy efficiency in 6Gnetworks is addressed.Next,this paper presents howthe 6G’s speed and bandwidth enables AI and the easy management of virtualized systems.Using terahertz connections is sufficient to have virtualized systems move compute environments as well as data.For instance,a computing environment can follow potential security violations while leveraging AI.Such virtual machines can store their findings in blockchains.In 6G scenarios,case studies and real-world applications of AI-powered secure blockchain clustering are given.Moreover,challenges and promising future research opportunities are highlighted.These challenges and opportunities provide insights from the most recent developments and point to areas where AI and blockchain further ensure security and efficiency in 6G networks. 展开更多
关键词 AI blockchain clustering energy efficiency SECURITY CHALLENGES future perspectives 6G
在线阅读 下载PDF
An intelligent recognition method of deep shale gas reservoir laminaset based on laminaset clustering and R-L-M algorithm
10
作者 Yu Zeng Fuqiang Lai +4 位作者 Haijie Zhang Yi Jiang Junwei Pu Tongtong Luo Xiaoxia Zhao 《Artificial Intelligence in Geosciences》 2025年第1期97-112,共16页
Lamina structures,as typical sedimentary features in shale formations,determine both the quality of shale reservoirs and fracturing effects.In this study,through electric imaging logging,based on core scanning photos,... Lamina structures,as typical sedimentary features in shale formations,determine both the quality of shale reservoirs and fracturing effects.In this study,through electric imaging logging,based on core scanning photos,thin sections,and other data from the Wufeng-Longmaxi Formation shale reservoirs in the western Sichuan Block,the characteristics and classification scheme of deep shale gas reservoir laminaset were clarified.In addition,with core scale electrical images,the electrical imaging logging response characteristics of different types of laminaset were identified.Based on electrical imaging logging images,a laminaset clustering algorithm was designed to segment the laminaset and then Levenberg-Marquardt(L-M)algorithm was improved by introducing a random forest to obtain the R-L-M algorithm,which was used to extract key parameters of lam-inaset such as attitude,type,density,and thickness.The average accuracy,recall rate,and F1 score of laminaset recognition results of this algorithm were 14.82%higher than those of a well-known international commercial software(T).This method was used to evaluate the Longmaxi Formation shale gas reservoir in the western Sichuan Block.The development density of clay-siliceous(organic-lean)laminaset from the Longyi 1-4 small layer to the lower Wufeng Formation firstly decreased and then increased and the minimum value was found in Longyi 1-1 small layer.In contrast,the development density of siliceous-clay laminaset(organic-rich)first increased and then gradually decreased and the maximum value was found in Longyi 1-1 small layer.The clay-siliceous laminaset(organic matters-contained)and the calcareous-clay laminaset(organic matters-contained)showed a stable developmental trend. 展开更多
关键词 SHALE Electrical image laminaset clustering R-L-M
在线阅读 下载PDF
A Clustering OLSR with Low Control Overhead
11
作者 Chen Junyu Li Li +2 位作者 Ding Lianghui Yang Feng Qian Liang 《China Communications》 2025年第6期193-206,共14页
Heavy routing overhead in Mobile Ad hoc Network(MANET)is a main bottleneck limiting the network performance.In this paper,we propose a novel Clustering OLSR(C-OLSR)approach,which utilizes two schemes,i.e.,clustering a... Heavy routing overhead in Mobile Ad hoc Network(MANET)is a main bottleneck limiting the network performance.In this paper,we propose a novel Clustering OLSR(C-OLSR)approach,which utilizes two schemes,i.e.,clustering and optimized Topology Control(TC)message transfer to reduce the control overhead of OLSR while guaranteeing its realtime requirement.To reduce the control overhead,in C-LOSR,flooding of TC messages is only limited in the cluster.All TC messages are integrated into a Cluster Topology Control(CTC)message by the cluster header and broadcast over the network.To satisfy the real-time requirement,any topology change will trigger CTC messages over the network.Extensive simulations have been done to evaluate the performance of the proposed C-OLSR.Results show that C-OLSR can achieve lower control overhead than OLSR by 44.32%in static networks and by 23.21%in dynamic networks. 展开更多
关键词 clustering MANET network management OLSR OVERHEAD
在线阅读 下载PDF
Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs
12
作者 Aadil Mushtaq Pandith Manni Kumar +5 位作者 Naveen Kumar Nitin Goyal Sachin Ahuja Yonis Gulzar Rashi Rastogi Rupesh Gupta 《Computers, Materials & Continua》 2025年第4期259-279,共21页
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregatio... Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments.Additionally,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole issue.Moreover,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network performance.To address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile UWSNs.The proposed method has four main phases:clustering,CH selection,data aggregation,and re-clustering.During CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy efficiency.In the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving energy.To adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects CHs.Simulation results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs. 展开更多
关键词 clustering data aggregation data collection fuzzy model MONITORING UWSN
在线阅读 下载PDF
Improved Geyser-Inspired Optimization Algorithm with Adaptive Turbulence and Dynamic Pressure Equilibrium for Data Clustering
13
作者 Laith Abualigah Saleh Ali Alomari +6 位作者 Mohammad H.Almomani Raed Abu Zitar Hazem Migdady Kashif Saleem Aseel Smerat Vaclav Snasel Absalom E.Ezugwu 《Journal of Bionic Engineering》 2025年第3期1400-1433,共34页
While Metaheuristic optimization techniques are known to work well for clustering and large-scale numerical optimization,algorithms in this category suffer from issues like reinforcement stagnation and poor late-stage... While Metaheuristic optimization techniques are known to work well for clustering and large-scale numerical optimization,algorithms in this category suffer from issues like reinforcement stagnation and poor late-stage refinement.In this paper,we propose the Improved Geyser-Inspired Optimization Algorithm(IGIOA),an enhancement of the Geyser-Inspired Optimization Algorithm(GIOA),which integrates two primary components:the Adaptive Turbulence Operator(ATO)and the Dynamic Pressure Equilibrium Operator(DPEO).ATO allows IGIOA to periodically disrupt stagnation and explore different regions by using turbulence,while DPEO ensures refinement in later iterations by adaptively modulating convergence pressure.We implemented IGIOA on 23 benchmark functions with both unimodal and multimodal contours,in addition to eight problems pertaining to cluster analysis at the UCI.IGIOA,out of all the tested methods,was able to converge most accurately while also achieving a stable convergence rate.The mitigation of premature convergence and low-level exploitation was made possible by the turbulence and pressure-based refinements.The findings from the tests confirm that the adaptation of baseline strategies by IGIOA helps deal with complex data distributions more effectively.However,additional hyperparameters which add complexity are introduced,along with increased computational cost.These include automatic tuning of parameters,ensemble or parallel variations,and hybridization with dedicated local search strategies to extend the reach of IGIOA for general optimization while also specializing it for clustering focused tasks and applications. 展开更多
关键词 IGIOA Metaheuristics clustering Turbulence operator Pressure equilibrium
在线阅读 下载PDF
FedEPC:An Efficient and Privacy-Enhancing Clustering Federated Learning Method for Sensing-Computing Fusion Scenarios
14
作者 Ning Tang Wang Luo +6 位作者 Yiwei Wang Bao Feng Shuang Yang Jiangtao Xu Daohua Zhu Zhechen Huang Wei Liang 《Computers, Materials & Continua》 2025年第11期4091-4113,共23页
With the deep integration of edge computing,5G and Artificial Intelligence ofThings(AIoT)technologies,the large-scale deployment of intelligent terminal devices has given rise to data silos and privacy security challe... With the deep integration of edge computing,5G and Artificial Intelligence ofThings(AIoT)technologies,the large-scale deployment of intelligent terminal devices has given rise to data silos and privacy security challenges in sensing-computing fusion scenarios.Traditional federated learning(FL)algorithms face significant limitations in practical applications due to client drift,model bias,and resource constraints under non-independent and identically distributed(Non-IID)data,as well as the computational overhead and utility loss caused by privacy-preserving techniques.To address these issues,this paper proposes an Efficient and Privacy-enhancing Clustering Federated Learning method(FedEPC).This method introduces a dual-round client selection mechanism to optimize training.First,the Sparsity-based Privacy-preserving Representation Extraction Module(SPRE)and Adaptive Isomorphic Devices Clustering Module(AIDC)cluster clients based on privacy-sensitive features.Second,the Context-aware Incluster Client Selection Module(CICS)dynamically selects representative devices for training,ensuring heterogeneous data distributions are fully represented.By conducting federated training within clusters and aggregating personalized models,FedEPC effectively mitigates weight divergence caused by data heterogeneity,reduces the impact of client drift and straggler issues.Experimental results demonstrate that FedEPC significantly improves test accuracy in highly Non-IID data scenarios compared to FedAvg and existing clustering FL methods.By ensuring privacy security,FedEPC provides an efficient and robust solution for FL in resource-constrained devices within sensing-computing fusion scenarios,offering both theoretical value and engineering practicality. 展开更多
关键词 Federated learning edge computing clustering NON-IID PRIVACY
在线阅读 下载PDF
Enhancing patient rehabilitation predictions with a hybrid anomaly detection model:Density-based clustering and interquartile range methods
15
作者 Murad Ali Khan Jong-Hyun Jang +5 位作者 Naeem Iqbal Harun Jamil Syed Shehryar Ali Naqvi Salabat Khan Jae-Chul Kim Do-Hyeun Kim 《CAAI Transactions on Intelligence Technology》 2025年第4期983-1006,共24页
In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reve... In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models. 展开更多
关键词 anomaly detection deep learning density-based clustering hybrid model IQR regression
在线阅读 下载PDF
A Hybrid Feature Selection and Clustering-Based Ensemble Learning Approach for Real-Time Fraud Detection in Financial Transactions
16
作者 Naif Almusallam Junaid Qayyum 《Computers, Materials & Continua》 2025年第11期3653-3687,共35页
This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction m... This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics. 展开更多
关键词 Fraud detection financial transactions economic impact feature selection clustering ensemble learning
在线阅读 下载PDF
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
17
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 Multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
A Clustering Model Based on Density Peak Clustering and the Sparrow Search Algorithm for VANETs
18
作者 Chaoliang Wang Qi Fu Zhaohui Li 《Computers, Materials & Continua》 2025年第8期3707-3729,共23页
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead... Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios. 展开更多
关键词 VANETS CLUSTER density peak clustering sparrow search algorithm
在线阅读 下载PDF
Software Defect Prediction Based on Semantic Views of Metrics:Clustering Analysis and Model Performance Analysis
19
作者 Baishun Zhou Haijiao Zhao +4 位作者 Yuxin Wen Gangyi Ding Ying Xing Xinyang Lin Lei Xiao 《Computers, Materials & Continua》 2025年第9期5201-5221,共21页
In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defe... In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defect prediction methods based on software metric elements highly rely on software metric data.However,redundant software metric data is not conducive to efficient defect prediction,posing severe challenges to current software defect prediction tasks.To address these issues,this paper focuses on the rational clustering of software metric data.Firstly,multiple software projects are evaluated to determine the preset number of clusters for software metrics,and various clustering methods are employed to cluster the metric elements.Subsequently,a co-occurrence matrix is designed to comprehensively quantify the number of times that metrics appear in the same category.Based on the comprehensive results,the software metric data are divided into two semantic views containing different metrics,thereby analyzing the semantic information behind the software metrics.On this basis,this paper also conducts an in-depth analysis of the impact of different semantic view of metrics on defect prediction results,as well as the performance of various classification models under these semantic views.Experiments show that the joint use of the two semantic views can significantly improve the performance of models in software defect prediction,providing a new understanding and approach at the semantic view level for defect prediction research based on software metrics. 展开更多
关键词 Software defect prediction software engineering semantic views clustering INTERPRETABILITY
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
20
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network clustering Cluster head selection Deep reinforcement learning
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部