Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in mo...Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.展开更多
This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simula...This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.展开更多
The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize t...The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize the rational reuse of abandoned mine land based on the future land use structure and spatial layout of mountainous area. In this paper, optimization of the spatial structure of mountainous abandoned mine land reuse is realized through the system dynamics model and CLUE-S model. Mentougou district, Beijing, China is selected as the research area. System dynamics model with feedback functions is constructed to simulate land use structure from 2011 to 2025, which is taken as the quanfiiative constraint on spatial structure optimization. CLUE-S model with neighborhood analysis function is applied to simulate future land use spatial structure. The simulation result layer is superimposed with the abandoned mine land distribution layer and the optimized spatial structure of abandoned mine land reuse then is determined, checked by reuse suitability evaluation. The result shows that abandoned mine land can be fully optimized as other land use types according to demand, and the reuse directions are water conservancy facilities land, urban land, rural residential land, tourism land, garden land, woodland and grassland. The trend of abandoned mine land reuse tend to be consistent with land use types of neighboring patches. This study can provide theoretical reference for the practices of mountainous abandoned mine land reuse.展开更多
The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model is a widely used method to simulate land use change. An ordinary logistic regression model was integrated into the CLUE-S model to i...The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model is a widely used method to simulate land use change. An ordinary logistic regression model was integrated into the CLUE-S model to identify explanatory variables without considering the spatial autocorrelation effect. Using image-derived maps of the Changsha- Zhuzhou-Xiangtan urban agglomeration, the CLUE-S model was integrated with the ordinary logistic regression and autologistic regression models in this paper to simulate land use change in 2000, 2005 and 2009 based on an observation map from 1995. Significant positive spatial autocorrelation was detected in residuals of ordinary logistic models. Some variables that were much more significant than they should be were selected. Autologistic regression models, which used autocovariate incorporation, were better able to identify driving factors. The Receiver Operating Characteristic Curve (ROC) values of autologistic regression models were larger than 0.8 and the pseudo R^2 values were improved, compared with results of logistic regression model. By overlapping the observation maps, the Kappa values of the ordinary logistic regression model (OL)-CLUE-S and autologistic regression model (AL)-CLUE-S models were larger than 0.75. The results showed that the simulation results were indeed accurate. The Kappa fuzzy (Kfuzzy) values of the AL-CLUE-S models (0.780, 0.773, 0.606) were larger than the values of the OL-CLUE-S models (0.759, 0.760, 0.599) during the three periods. The AL-CLUE-S models performed better than the OL-CLUE-S models in the simulation of land use change. The results showed that it is reasonable to integrate autocovariates into CLUE-S models. However, the Kfuzzy values decreased with prolonged duration of simulation and the maximum range of time was not discussed in this paper.展开更多
This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocatio...This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.展开更多
Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. I...Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.展开更多
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p...BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
基金supported by the Special Fund for Agroscientific Research in the Public Interest,China(20110300501-01)the Special Fund for First-Class University (4572-18101510)
文摘Green manure use in China has declined rapidly since the 1980 s with the extensive use of chemical fertilizers.The deterioration of field environments and the demand for green agricultural products have resulted in more attention to green manure.Human intervention and policy-oriented behaviors likely have large impacts on promoting green manure planting.However,little information is available regarding on where,at what rates,and in which ways(i.e.,intercropping green manure in orchards or rotating green manure in cropland) to develop green manure and what benefits could be gained by incorporating green manure in fields at the county scale.This paper presents the conversion of land use and its effects at small region extent(CLUE-S) model,which is specifically developed for the simulation of land use changes originally,to predict spatial distribution of green manure in cropland and orchards in 2020 in Pinggu District located in Beijing,China.Four types of land use for planting or not planting green manure were classified and the future land use dynamics(mainly croplands and orchards) were considered in the prediction.Two scenarios were used to predict the spatial distribution of green manure based on data from 2011:The promotion of green manure planting in orchards(scenario 1) and the promotion of simultaneous green manure planting in orchards and croplands(scenario 2).The predictions were generally accurate based on the receiver operating characteristic(ROC) and Kappa indices,which validated the effectiveness of the CLUE-S model in the prediction.In addition,the spatial distribution of the green manure was acquired,which indicated that green manure mainly located in the orchards of the middle and southern regions of Dahuashan,the western and southern regions of Wangxinzhuang,the middle region of Shandongzhuang,the eastern region of Pinggu and the middle region of Xiagezhuang under scenario 1.Green manure planting under scenario 2 occurred in orchards in the middle region of Wangxinzhuang,and croplands in most regions of Daxingzhuang,southern Pinggu,northern Xiagezhuang and most of Mafang.The spatially explicit results allowed for the assessment of the benefits of these changes based on different economic and ecological indicators.The economic and ecological gains of scenarios 1 and 2 were 175691 900 and143000 300 CNY,respectively,which indicated that the first scenario was more beneficial for promoting the same area of green manure.These results can facilitate policies of promoting green manure and guide the extensive use of green manure in local agricultural production in suitable ways.
文摘This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.
基金the National Natural Science Foundation of China (41877533)Beijing Social Science Foundation (18GLB014).
文摘The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize the rational reuse of abandoned mine land based on the future land use structure and spatial layout of mountainous area. In this paper, optimization of the spatial structure of mountainous abandoned mine land reuse is realized through the system dynamics model and CLUE-S model. Mentougou district, Beijing, China is selected as the research area. System dynamics model with feedback functions is constructed to simulate land use structure from 2011 to 2025, which is taken as the quanfiiative constraint on spatial structure optimization. CLUE-S model with neighborhood analysis function is applied to simulate future land use spatial structure. The simulation result layer is superimposed with the abandoned mine land distribution layer and the optimized spatial structure of abandoned mine land reuse then is determined, checked by reuse suitability evaluation. The result shows that abandoned mine land can be fully optimized as other land use types according to demand, and the reuse directions are water conservancy facilities land, urban land, rural residential land, tourism land, garden land, woodland and grassland. The trend of abandoned mine land reuse tend to be consistent with land use types of neighboring patches. This study can provide theoretical reference for the practices of mountainous abandoned mine land reuse.
基金National Natural Science Foundation of China,No.41171318National Key Technology Support Program,No.2012BAH32B03+1 种基金No.2012BAH33B05Special Fund for Forest Scientific Research in the Public Welfare,No.201204201
文摘The Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model is a widely used method to simulate land use change. An ordinary logistic regression model was integrated into the CLUE-S model to identify explanatory variables without considering the spatial autocorrelation effect. Using image-derived maps of the Changsha- Zhuzhou-Xiangtan urban agglomeration, the CLUE-S model was integrated with the ordinary logistic regression and autologistic regression models in this paper to simulate land use change in 2000, 2005 and 2009 based on an observation map from 1995. Significant positive spatial autocorrelation was detected in residuals of ordinary logistic models. Some variables that were much more significant than they should be were selected. Autologistic regression models, which used autocovariate incorporation, were better able to identify driving factors. The Receiver Operating Characteristic Curve (ROC) values of autologistic regression models were larger than 0.8 and the pseudo R^2 values were improved, compared with results of logistic regression model. By overlapping the observation maps, the Kappa values of the ordinary logistic regression model (OL)-CLUE-S and autologistic regression model (AL)-CLUE-S models were larger than 0.75. The results showed that the simulation results were indeed accurate. The Kappa fuzzy (Kfuzzy) values of the AL-CLUE-S models (0.780, 0.773, 0.606) were larger than the values of the OL-CLUE-S models (0.759, 0.760, 0.599) during the three periods. The AL-CLUE-S models performed better than the OL-CLUE-S models in the simulation of land use change. The results showed that it is reasonable to integrate autocovariates into CLUE-S models. However, the Kfuzzy values decreased with prolonged duration of simulation and the maximum range of time was not discussed in this paper.
基金Under the auspices of National Natural Science Foundation of China (No. 70903061,41171440)National Public Benefit (Land) Research Foundation of China (No. 201111014)Fundamental Research Funds for the Central Universities (No. 2011YXL055)
文摘This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.
基金Under the auspices of National Natural Science Foundation of China(No.41171155,40801069)National Science and Technology Major Project of China:Water Pollution Control and Governance(No.2012ZX07505-003)
文摘Non-point source(NPS) pollution has become a major source of water pollution. A combination of models would provide the necessary direction and approaches designed to control NPS pollution through land use planning. In this study, NPS pollution load was simulated in urban planning, historic trends and ecological protection land use scenarios based on the Conversion of Land Use and its Effect at Small regional extent(CLUE-S) and Soil and Water Assessment Tool(SWAT) models applied to Hunhe-Taizi River Watershed, Liaoning Province, China. Total nitrogen(TN) and total phosphorus(TP) were chosen as NPS pollution indices. The results of models validation showed that CLUE-S and SWAT models were suitable in the study area. NPS pollution mainly came from dry farmland, paddy, rural and urban areas. The spatial distribution of TN and TP exhibited the same trend in 57 sub-catchments. The TN and TP had the highest NPS pollution load in the western and central plains, which concentrated the urban area and farm land. The NPS pollution load would increase in the urban planning and historic trends scenarios, and would be even higher in the urban planning scenario. However, the NPS pollution load decreased in the ecological protection scenario. The differences observed in the three scenarios indicated that land use had a degree of impact on NPS pollution, which showed that scientific and ecologically sound construction could effectively reduce the NPS pollution load in a watershed. This study provides a scientific method for conducting NPS pollution research at the watershed scale, a scientific basis for non-point source pollution control, and a reference for related policy making.
基金Supported by National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.