建立了由一个制造商和一个分销商组成的基于电子市场的二级供应链模型,讨论了分销商采用Bricks and Clicks模式分销产品,并在电子渠道进行季节后销售的情况,分析了供应链的契约协调问题及供应链成员的利润情况.研究发现改进的回购契约...建立了由一个制造商和一个分销商组成的基于电子市场的二级供应链模型,讨论了分销商采用Bricks and Clicks模式分销产品,并在电子渠道进行季节后销售的情况,分析了供应链的契约协调问题及供应链成员的利润情况.研究发现改进的回购契约可以使Bricks and Clicks分销模式下基于电子市场的二级供应链模型达到协调,使分销商的订货量达到供应链最优,并且使供应链成员的利润达到Pareto改进,达到"双赢".最后,通过算例验证了结论.展开更多
The incompatible probability represents an important non-classical phenomenon, and it describes conflicting observed marginal probabilities, which cannot be satisfied with a joint probability. First, the incompatibili...The incompatible probability represents an important non-classical phenomenon, and it describes conflicting observed marginal probabilities, which cannot be satisfied with a joint probability. First, the incompatibility of random variables was defined and discussed via the non-positive semi-definiteness of their covariance matrixes. Then, a method was proposed to verify the existence of incompatible probability for variables. A hypothesis testing was also applied to reexamine the likelihood of the observed marginal probabilities being integrated into a joint probability space, thus showing the statistical significance of incompatible probability cases. A case study with user click-through data provided the initial evidence of the incompatible probability in information retrieval (IR), particularly in user interaction. The experiments indicate that both incompatible and compatible cases can be found in IR data, and informational queries are more likely to be compatible than navigational queries. The results inspire new theoretical perspectives of modeling the complex interactions and phenomena in IR.展开更多
Thiol-ene click polymerization has become an effective synthetic tool for constructing diverse sulfurcontaining polymers with advanced functions.However,the polymerization of internal alkene and thiol has been rarely ...Thiol-ene click polymerization has become an effective synthetic tool for constructing diverse sulfurcontaining polymers with advanced functions.However,the polymerization of internal alkene and thiol has been rarely used to prepare functional polymers because of large steric hindrance and relatively weak reactivity.In this work,a base-catalyzed click polymerization of thiols and internal olefins was successfully established in air.Notably,the polymerization went smoothly in halogen-containing solvent even without any catalyst via a radical step-growth polymerization.The polymerization enjoys excellent monomer applicability,which affords 16 well-defined polythioethers in high yields(up to 99%)with high molecular weights(Mwup to 19,600),good thermal stability(Td,5%up to 326℃),broadly regulated glass transition temperatures(-24~95℃),and unconventional fluorescence.Via a simple solvent regulation strategy,the vanillin-derived polythioether could be used as a turn-off fluorescence probe for Fe3+ions in DMF/H2O and a turn-on probe for Ag+ions in THF,with low detection limits of 9.15×10^(-7)mol/L and 4.60×10^(-7)mol/L,respectively.Additionally,the detection of Ag+presented a transformation from a clear solution to an emulsion,expanding the application prospects through observing colorimetric and fluorescent dual signals.Thus,this work not only holds significance in establishing an efficient polymerization,but also provides a strategy to prepare sensitive fluorescent probes for multiple metal ions.展开更多
Micellar nanostructures formed by amphiphilic polymers are prone to dissociation when the in vivo environment changes.Polyprodrug micelles can cross-link with other hydrophobic drugs through noncovalent bonds,which ha...Micellar nanostructures formed by amphiphilic polymers are prone to dissociation when the in vivo environment changes.Polyprodrug micelles can cross-link with other hydrophobic drugs through noncovalent bonds,which has the advantage of fixed structure and avoids the use of chemical cross-linking agents.In this study,we prepared a polyprodrug with hydrophobic curcumin(CUR)and hydrophilic poly(ethylene glycol)(PEG)in the main chain through a click reaction between CUR derivatives containing azide groups and di-alkynly-capped PEG.Due to the presence of benzene rings in the structure of CUR,the polyprodrug can form non-covalent cross-linked nanoparticles(NCCL-CUR NPs)through hydrophobic andπ-πstacking interaction.The structure,molecular weight,and self-assembly properties of the polyprodrug were characterized.The anti-cancer drug camptothecin(CPT)was encapsulated in the polyprodrug nanoparticles,producing dual-drug-loaded nanoparticles(abbreviated as CPT@NCCL-CUR NPs).The test results indicate that the NPs have reductive responsiveness and can release the original drugs CUR and CPT in phosphate buffer(PB)solution containing glutathione(GSH),while remaining stability in physiological environment.Cell and in vivo experiments further demonstrate that the dualdrug-loaded CPT@NCCL-CUR NPs can inhibit the growth of tumor through synergistic effects.This work provides a valuable approach for the preparation of amphiphilic polyprodrug with anti-tumor CUR as the backbone,and the stable dual-drug-loaded NPs containing both CUR and CPT through non-covalent cross-linking for synergistic therapy.展开更多
Tumor blockade therapy inhibits tumor progression by cutting off essential supplies of nutrients,oxygen,and biomolecules from the surrounding microenvironments.Inspired by natural processes,tumor biomineralization has...Tumor blockade therapy inhibits tumor progression by cutting off essential supplies of nutrients,oxygen,and biomolecules from the surrounding microenvironments.Inspired by natural processes,tumor biomineralization has evolved due to its biocompatibility,self-reinforcing capability,and penetrationindependent mechanism.However,the selective induction of tumor biomineralization using synthetic tools presents a significant challenge.Herein,a metabolic glycoengineering-assistant tumor biomineralization strategy was developed.Specifically,the azido group(N_(3))was introduced onto the cytomembrane by incubating tumor cells with glycose analog Ac4ManNAz.In addition,a bisphosphonate-containing polymer,dibenzocyclooctyne-poly(ethylene glycol)-alendronate(DBCO-PEG-ALN,DBPA)was synthesized,which attached to the tumor cell surface via"click chemistry"reaction between DBCO and N_(3).Subsequently,the bisphosphonate group on the cell surface chelated with positively charged ions in the microenvironments,triggering a consecutive process of biomineralization.This physical barrier significantly reduced tumor cell viability and mobility in a calcium ion concentration-dependent manner,suggesting its potential as an effective anti-tumor strategy for in vivo applications.展开更多
Adsorptive separation holds important prospect for the challenging recovery of C_(2)H_(6) and C_(3)H_(8) from natural gas and the separation efficiency is primarily determined by a high-performance adsorbent.In this w...Adsorptive separation holds important prospect for the challenging recovery of C_(2)H_(6) and C_(3)H_(8) from natural gas and the separation efficiency is primarily determined by a high-performance adsorbent.In this work,we reported the synthesis of a novel porous organic polymer,FOSU-POP-1 for the separation of CH_(4)/C_(2)H_(6)/C_(3)H_(8).The FOSU-POP-1 was synthesized from tetrakis(4-azidophenyl)methane and 1,3,5-triethynylbenzene via click reaction with a Brunauer-Emmett-Teller(BET)surface area of 1038 m^(2)·g^(-1).Exhibiting stronger affinity towards C_(3)H_(8) and C_(2)H_(6) than CH_(4),2.85 mmol·g^(-1) for C_(3)H_(8) and 2.14 mmol·g^(-1) for C_(2)H_(6) were achieved on the FOSU-POP-1 at 0.1 MPa,298 K,with an ideal adsorbed solution theory selectivity of 227 for C_(3)H_(8)/CH_(4).The breakthrough experiment confirmed the good dynamic separation performance and recyclability of FOSU-POP-1 for CH_(4)/C_(2)H_(6)/C_(3)H_(8) ternary mixture.The density functional theory calculation further revealed that the N atom in triazole ring interacted strongly with the C_(3)H_(8) and C_(2)H_(6).This work highlighted the promising capability of FOSU-POP-1 for efficiently separating CH_(4)/C_(2)H_(6)/C_(3)H_(8) mixture.展开更多
Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by sma...Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association.Plants leverage these signals to distinguish between pathogens and beneficial microbes,dynamically modulate immune responses,and secrete exudates to recruit a beneficial microbiome,while microbes in turn influence plant nutrient acquisition and stress resilience.Such bidirectional chemical dialogues underpin nutrient cycling,co-evolution,microbiome assembly,and plant resistance.However,knowledge gaps persist regarding validating the key molecules involved in plant–microbe interactions.Interpreting chemical communication requires multi-omics integration to predict key information,genome editing and click chemistry to verify the function of biomolecules,and artificial intelligence(AI)models to improve resolution and accuracy.This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.展开更多
将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的...将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的影响。给出了瓶鼻海豚对测试信号产生躲避行为的声压级门限(154±2 dB re 1μPa,rms),并与鼠海豚的躲避声压门限级进行了对比。结果表明:信号发射期,瓶鼻海豚移离了声源位置,增加了露出水面的次数,水下发出click声信号的次数明显减少。因此,瓶鼻海豚对20kHz连续信号产生了行为改变。展开更多
文摘建立了由一个制造商和一个分销商组成的基于电子市场的二级供应链模型,讨论了分销商采用Bricks and Clicks模式分销产品,并在电子渠道进行季节后销售的情况,分析了供应链的契约协调问题及供应链成员的利润情况.研究发现改进的回购契约可以使Bricks and Clicks分销模式下基于电子市场的二级供应链模型达到协调,使分销商的订货量达到供应链最优,并且使供应链成员的利润达到Pareto改进,达到"双赢".最后,通过算例验证了结论.
基金Supported by National Basic Research Program of China("973"Program,No.2013cb329304)Natural Science Foundation of China(No.61105072,No.61070044 and No.61111130190)International Joint Research Project"QONTEXT"of the Council of European Union
文摘The incompatible probability represents an important non-classical phenomenon, and it describes conflicting observed marginal probabilities, which cannot be satisfied with a joint probability. First, the incompatibility of random variables was defined and discussed via the non-positive semi-definiteness of their covariance matrixes. Then, a method was proposed to verify the existence of incompatible probability for variables. A hypothesis testing was also applied to reexamine the likelihood of the observed marginal probabilities being integrated into a joint probability space, thus showing the statistical significance of incompatible probability cases. A case study with user click-through data provided the initial evidence of the incompatible probability in information retrieval (IR), particularly in user interaction. The experiments indicate that both incompatible and compatible cases can be found in IR data, and informational queries are more likely to be compatible than navigational queries. The results inspire new theoretical perspectives of modeling the complex interactions and phenomena in IR.
基金financially supported by the National Natural Science Foundation of China(Nos.22479102,22001078)the Guangdong Talent Program(No.2023TQ07L822)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011716)the startup funding of Songshan Lake Materials Laboratory(No.Y1D1031H311)。
文摘Thiol-ene click polymerization has become an effective synthetic tool for constructing diverse sulfurcontaining polymers with advanced functions.However,the polymerization of internal alkene and thiol has been rarely used to prepare functional polymers because of large steric hindrance and relatively weak reactivity.In this work,a base-catalyzed click polymerization of thiols and internal olefins was successfully established in air.Notably,the polymerization went smoothly in halogen-containing solvent even without any catalyst via a radical step-growth polymerization.The polymerization enjoys excellent monomer applicability,which affords 16 well-defined polythioethers in high yields(up to 99%)with high molecular weights(Mwup to 19,600),good thermal stability(Td,5%up to 326℃),broadly regulated glass transition temperatures(-24~95℃),and unconventional fluorescence.Via a simple solvent regulation strategy,the vanillin-derived polythioether could be used as a turn-off fluorescence probe for Fe3+ions in DMF/H2O and a turn-on probe for Ag+ions in THF,with low detection limits of 9.15×10^(-7)mol/L and 4.60×10^(-7)mol/L,respectively.Additionally,the detection of Ag+presented a transformation from a clear solution to an emulsion,expanding the application prospects through observing colorimetric and fluorescent dual signals.Thus,this work not only holds significance in establishing an efficient polymerization,but also provides a strategy to prepare sensitive fluorescent probes for multiple metal ions.
基金supported by the National Natural Science Foundation of China(No.21975169)the Project Fund of the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions+2 种基金the Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function of Soochow Universitythe Research project of China Baoyuan Investment Co.,Ltd.Suzhou Science and Technology Plan Project(No.SKY2023051)。
文摘Micellar nanostructures formed by amphiphilic polymers are prone to dissociation when the in vivo environment changes.Polyprodrug micelles can cross-link with other hydrophobic drugs through noncovalent bonds,which has the advantage of fixed structure and avoids the use of chemical cross-linking agents.In this study,we prepared a polyprodrug with hydrophobic curcumin(CUR)and hydrophilic poly(ethylene glycol)(PEG)in the main chain through a click reaction between CUR derivatives containing azide groups and di-alkynly-capped PEG.Due to the presence of benzene rings in the structure of CUR,the polyprodrug can form non-covalent cross-linked nanoparticles(NCCL-CUR NPs)through hydrophobic andπ-πstacking interaction.The structure,molecular weight,and self-assembly properties of the polyprodrug were characterized.The anti-cancer drug camptothecin(CPT)was encapsulated in the polyprodrug nanoparticles,producing dual-drug-loaded nanoparticles(abbreviated as CPT@NCCL-CUR NPs).The test results indicate that the NPs have reductive responsiveness and can release the original drugs CUR and CPT in phosphate buffer(PB)solution containing glutathione(GSH),while remaining stability in physiological environment.Cell and in vivo experiments further demonstrate that the dualdrug-loaded CPT@NCCL-CUR NPs can inhibit the growth of tumor through synergistic effects.This work provides a valuable approach for the preparation of amphiphilic polyprodrug with anti-tumor CUR as the backbone,and the stable dual-drug-loaded NPs containing both CUR and CPT through non-covalent cross-linking for synergistic therapy.
基金supported by the National Natural Science Foundation of China(Nos.U23A20591 and 52273158)the Science and Technology Development Program of Jilin Province(Nos.20240101002JJ and 20210504001GH).
文摘Tumor blockade therapy inhibits tumor progression by cutting off essential supplies of nutrients,oxygen,and biomolecules from the surrounding microenvironments.Inspired by natural processes,tumor biomineralization has evolved due to its biocompatibility,self-reinforcing capability,and penetrationindependent mechanism.However,the selective induction of tumor biomineralization using synthetic tools presents a significant challenge.Herein,a metabolic glycoengineering-assistant tumor biomineralization strategy was developed.Specifically,the azido group(N_(3))was introduced onto the cytomembrane by incubating tumor cells with glycose analog Ac4ManNAz.In addition,a bisphosphonate-containing polymer,dibenzocyclooctyne-poly(ethylene glycol)-alendronate(DBCO-PEG-ALN,DBPA)was synthesized,which attached to the tumor cell surface via"click chemistry"reaction between DBCO and N_(3).Subsequently,the bisphosphonate group on the cell surface chelated with positively charged ions in the microenvironments,triggering a consecutive process of biomineralization.This physical barrier significantly reduced tumor cell viability and mobility in a calcium ion concentration-dependent manner,suggesting its potential as an effective anti-tumor strategy for in vivo applications.
基金financially supported by the National Natural Science Foundation of China(22208050,22108034)Guangdong Provincial Natural Science Foundation Project(2023A1515012151)Scientific Research Project of Guangdong Provincial Department of Education(2023KTSCX132).
文摘Adsorptive separation holds important prospect for the challenging recovery of C_(2)H_(6) and C_(3)H_(8) from natural gas and the separation efficiency is primarily determined by a high-performance adsorbent.In this work,we reported the synthesis of a novel porous organic polymer,FOSU-POP-1 for the separation of CH_(4)/C_(2)H_(6)/C_(3)H_(8).The FOSU-POP-1 was synthesized from tetrakis(4-azidophenyl)methane and 1,3,5-triethynylbenzene via click reaction with a Brunauer-Emmett-Teller(BET)surface area of 1038 m^(2)·g^(-1).Exhibiting stronger affinity towards C_(3)H_(8) and C_(2)H_(6) than CH_(4),2.85 mmol·g^(-1) for C_(3)H_(8) and 2.14 mmol·g^(-1) for C_(2)H_(6) were achieved on the FOSU-POP-1 at 0.1 MPa,298 K,with an ideal adsorbed solution theory selectivity of 227 for C_(3)H_(8)/CH_(4).The breakthrough experiment confirmed the good dynamic separation performance and recyclability of FOSU-POP-1 for CH_(4)/C_(2)H_(6)/C_(3)H_(8) ternary mixture.The density functional theory calculation further revealed that the N atom in triazole ring interacted strongly with the C_(3)H_(8) and C_(2)H_(6).This work highlighted the promising capability of FOSU-POP-1 for efficiently separating CH_(4)/C_(2)H_(6)/C_(3)H_(8) mixture.
基金supported by the National Key R&D Program of China(No.2025YFE0104500)the Zhejiang Provincial Natural Science Foundation of China(No.LD25C140002),the Natural Science Foundation of Hangzhou(No.2024SZRZDC 130001)+1 种基金the National Natural Science Foundation of China(Nos.U21A20219 and 32122074)the Zhejiang University Global Partnership Fund,China.
文摘Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association.Plants leverage these signals to distinguish between pathogens and beneficial microbes,dynamically modulate immune responses,and secrete exudates to recruit a beneficial microbiome,while microbes in turn influence plant nutrient acquisition and stress resilience.Such bidirectional chemical dialogues underpin nutrient cycling,co-evolution,microbiome assembly,and plant resistance.However,knowledge gaps persist regarding validating the key molecules involved in plant–microbe interactions.Interpreting chemical communication requires multi-omics integration to predict key information,genome editing and click chemistry to verify the function of biomolecules,and artificial intelligence(AI)models to improve resolution and accuracy.This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
文摘将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的影响。给出了瓶鼻海豚对测试信号产生躲避行为的声压级门限(154±2 dB re 1μPa,rms),并与鼠海豚的躲避声压门限级进行了对比。结果表明:信号发射期,瓶鼻海豚移离了声源位置,增加了露出水面的次数,水下发出click声信号的次数明显减少。因此,瓶鼻海豚对20kHz连续信号产生了行为改变。