A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The N...A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.展开更多
A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smago...A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50679008)
文摘A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.
基金the National Natural Science Foundation of China (Grant No. 50409015)the Program forChangjiang Scholars and Innovative Research Team inUniversity (Grant No. IRT0420) the 40th ChinaPostdoctoral Science Foundation
文摘A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.