The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to ...The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.展开更多
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in L...We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.展开更多
In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within t...In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within the framework of the Dyson-Schwinger equations(DSEs). The results from CJT effective action are compared with lattice QCD data. We find that, when μ is small, our results generally fit the lattice QCD data when T〉T_c,but show deviations at and below T_c. It can be concluded that the EoS of CJT is reliable when T〉T_c. Then,by adopting the hydrodynamic code UVH2+1, we compare the CJT results of the multiplicity and elliptic flow v2 with the PHENIX data and the results from the original EoS in UVH2+1. While the CJT results of multiplicities generally match the original UVH2+1 results and fit the experimental data, the CJT results of v2 are slightly larger than the original UVH2+1 results for centralities smaller than 40% and smaller than the original UVH2+1 results for higher centralities.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. U1562214, 41702156, 41272151)the National Science and Technology Major Project (No. 2016ZX05003-002)
文摘The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.
文摘We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.
基金Supported by National Natural Science Foundation of China(11447121,11475085,11535005,11690030)Fundamental Research Funds for the Central Universities(020414380074)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1501035B)Natural Science Foundation of Jiangsu Province(BK20130078,BK20130387)
文摘In this work, we calculate the equation of state(EoS) of quark gluon-plasma(QGP) using the CornwallJackiw-Tomboulis(CJT) effective action. We get the quark propagator by using the rank-1 separable model within the framework of the Dyson-Schwinger equations(DSEs). The results from CJT effective action are compared with lattice QCD data. We find that, when μ is small, our results generally fit the lattice QCD data when T〉T_c,but show deviations at and below T_c. It can be concluded that the EoS of CJT is reliable when T〉T_c. Then,by adopting the hydrodynamic code UVH2+1, we compare the CJT results of the multiplicity and elliptic flow v2 with the PHENIX data and the results from the original EoS in UVH2+1. While the CJT results of multiplicities generally match the original UVH2+1 results and fit the experimental data, the CJT results of v2 are slightly larger than the original UVH2+1 results for centralities smaller than 40% and smaller than the original UVH2+1 results for higher centralities.