期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
改进YOLOv8的无人机航拍图像小目标检测算法 被引量:5
1
作者 侯颖 吴琰 +4 位作者 寇旭瑞 黄嘉超 庹金豆 王裕旗 黄晓俊 《计算机工程与应用》 北大核心 2025年第11期83-92,共10页
无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法... 无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法增加小目标物体检测头,采用四个特征检测头提升小目标检测率。设计构造ConvSPD卷积模块和BiFormer注意力增强模块的小目标检测模块组改进YOLOv8骨干网络,有效增强小目标浅层细节特征信息的捕获能力。为确保模型的硬件终端部署需求,采用可重参数化的Rep-PAN模型优化Neck网络。Head网络采用Focaler-CIoU损失函数优化回归定位损失,提高定位精度。在VisDrone-2019数据集上,改进算法平均检测精度达到51.2%,比YOLOv8提高10.9个百分点,检测速度为63.7 FPS,具有良好的实时性。 展开更多
关键词 无人机(UAV) 目标检测 深度学习 YOLOv8算法 注意力机制 Focaler-ciou损失函数
在线阅读 下载PDF
基于改进YOLOv4的车辆检测算法 被引量:1
2
作者 赖颖 巨志勇 叶雨新 《电子科技》 2025年第1期81-87,94,共8页
在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YO... 在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YOLOv4的路径聚合网络中增加一个新的特征层进行多尺度特征融合,提升模型对底层纹理特征的提取能力。在YOLO Head检测头前嵌入ECA(Efficient Channel Attention)通道注意力模块,对聚合后的特征进行合理的抑制和增强,将CIoU(Complete Intersection over Union)损失函数替换为Soft-CIoU损失函数,提高小目标车辆对损失函数的贡献度。在公开车辆数据集UA-DETRAC与KITTI中的实验结果表明,相较于原YOLOv4算法,所提算法的平均精度分别提升了2.45百分点和1.14百分点,检测速度达到41.67 frame·s^(-1)。相较于其他先进算法,所提算法在检测精度上表现良好。 展开更多
关键词 车辆检测 多尺度特征融合 注意力机制 Soft-ciou损失函数 YOLOv4 深度学习 目标检测 小目标
在线阅读 下载PDF
基于改进YOLOv5s算法的锂电池火灾识别模型 被引量:1
3
作者 张术琳 王澜凝 +1 位作者 文拙 鲁义 《消防科学与技术》 北大核心 2025年第8期1023-1028,共6页
锂电池火灾温度上升迅速,易引起周边物体燃烧,扩大火灾范围;同时,锂电池火灾会产生可燃气体,容易形成爆炸风险,加重火灾的危险性。因此,及时检测锂电池火灾以采取应急救援措施对阻断锂电池连锁事故具有重要意义。本研究基于YOLOv5s算法... 锂电池火灾温度上升迅速,易引起周边物体燃烧,扩大火灾范围;同时,锂电池火灾会产生可燃气体,容易形成爆炸风险,加重火灾的危险性。因此,及时检测锂电池火灾以采取应急救援措施对阻断锂电池连锁事故具有重要意义。本研究基于YOLOv5s算法,添加CA注意力机制增强模型的特征提取能力,并选用Mosaic-9数据增强算法提高模型的泛化能力,同时在模型中添加CIoU损失函数提升模型对小目标火焰的检测精度,建立基于改进YOLOv5s算法的锂电池火灾识别模型,并基于多干扰锂电池火灾数据集训练分析改进前后算法模型的损失函数和评价指标的鲁棒性。结果表明,改进模型的损失值收敛性更好,损失值较低;相比于原算法模型,改进算法模型的精确度提高了2.25%,召回率提升了2.11%,mAP增加了2.98%,F1分数提升了4.14%;改进算法模型在实现46帧/秒的检测速度的同时维持了准确的识别效果,本模型的建立对智能识别锂电池火灾的研究具有参考价值。 展开更多
关键词 锂电池火灾 火灾检测 YOLOv5s算法 CA注意力机制 Mosaic-9数据增强 ciou损失函数
在线阅读 下载PDF
基于改进YOLOv6模型的交通异常事件检测算法研究 被引量:1
4
作者 薛盘芬 靳凯斌 《公路交通技术》 2025年第1期176-181,189,共7页
交通异常事件检测是智能交通系统中的关键任务,但现有目标检测算法在该领域的应用尚存在技术瓶颈,针对检测精度不足、模型对复杂场景的适应性差以及缺乏高质量的公开数据集等问题,提出了一种改进的YOLOv6模型,旨在提高交通异常事件(如... 交通异常事件检测是智能交通系统中的关键任务,但现有目标检测算法在该领域的应用尚存在技术瓶颈,针对检测精度不足、模型对复杂场景的适应性差以及缺乏高质量的公开数据集等问题,提出了一种改进的YOLOv6模型,旨在提高交通异常事件(如车辆碰撞、单车冲撞和车辆起火)检测的准确性和性能。先将原YOLOv6模型中的损失函数替换为CIoU损失函数,以增强模型的定位精度,后引入CBAM注意力机制,以提高模型对关键特征的关注度,再采用自动混合精度训练策略优化训练过程,最后为了验证改进效果,通过游戏引擎Grand Theft Auto V生成数据集,并对其进行标注,涵盖3类交通异常事件。试验结果表明:1)提出的改进YOLOv6模型在交通异常事件的检测任务中可获得87.2%的平均检测精度,在各项指标上表现优异;2)召回率AR较次优模型提高2.1%,IoU阈值为0.5时,平均精度mAP高出2.6%;IoU阈值为0.5至0.95时,mAP增长3.7%;3)车辆相撞、单车相撞和车辆起火烧毁的精度分别达到79.9%、37.6%和65.6%,均优于次优模型,验证了改进方法的有效性。 展开更多
关键词 智能交通 交通异常事件检测 YOLOv6 ciou损失函数 CBAM注意力机制
在线阅读 下载PDF
基于改进YOLOv5s的烟丝间遮挡检测方法
5
作者 朱少俊 金守峰 +2 位作者 昝杰 李毅 郭彩霞 《计算机测量与控制》 2025年第9期47-55,共9页
为了解决生产环境中烟丝检测因粘连、遮挡现象而引发的检测精度不足等问题,提出一种基于改进YOLOv5s的遮挡烟丝检测方法;利用DCN v2C3模块替换YOLOv5s网络颈部的C3模块,提取烟丝深层次的特征信息,提升网络模型的空间变换能力及其泛化到... 为了解决生产环境中烟丝检测因粘连、遮挡现象而引发的检测精度不足等问题,提出一种基于改进YOLOv5s的遮挡烟丝检测方法;利用DCN v2C3模块替换YOLOv5s网络颈部的C3模块,提取烟丝深层次的特征信息,提升网络模型的空间变换能力及其泛化到不同形状目标的能力;引入Soft-NMS算法,平滑抑制冗余的边界框,增强对遮挡烟丝的识别能力;采用Alpha-CIOU损失函数,以优化模型的边界框定位精度;实验结果表明,与原始方法相比,改进方法的检测精度提高了2.7%。该方法在提高了检测精度的同时减少了计算量。 展开更多
关键词 深度学习 图像处理 遮挡检测 可变形卷积v2 Soft-NMS Alpha-ciou损失函数
在线阅读 下载PDF
基于改进YOLOv8的遥感图像目标检测算法
6
作者 酆兆辰 周虎 吴重军 《计算机工程与设计》 北大核心 2025年第7期1856-1863,共8页
为解决当前基于遥感图像识别技术中的错误判断问题及遗漏对象问题等缺陷,提出一种改进的YOLOv8目标检测算法来提升其准确率。使用Efficient ViT作为主要框架替代原始架构设计;在核心部分嵌入深度分离式卷积单元,构建Slim Neck构架结合C... 为解决当前基于遥感图像识别技术中的错误判断问题及遗漏对象问题等缺陷,提出一种改进的YOLOv8目标检测算法来提升其准确率。使用Efficient ViT作为主要框架替代原始架构设计;在核心部分嵌入深度分离式卷积单元,构建Slim Neck构架结合CA注意力机制和Ghostmodules;提出Focal-IOU损失函数重构IOU,取代CIOU。实验结果表明,改进后算法与原YOLOv8算法相比,m AP提升了2.4%,精确度和召回率也有一定提升,验证了改进算法的有效性和先进性。 展开更多
关键词 遥感图像 目标检测 损失函数 YOLOv8 主干网络 ciou 注意力机制
在线阅读 下载PDF
基于改进ATSS模型的水稻叶片病害检测 被引量:3
7
作者 丁士宁 姜明富 +1 位作者 刘丽娟 张莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第1期93-99,共7页
针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAF... 针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAFE模块代替特征金字塔网络FPN,以减少上采样过程中的信息损失。同时,为提升模型的检测效果,回归分支的损失函数采用CIoU损失函数代替GIoU。改进ATSS模型的平均精度均值可达74.0%,相比于原ATSS模型提升了3.5%。与模型Retinanet、Faster R-CNN、Cascade R-CNN、FCOS、TOOD相比,改进ATSS模型取得了最高的检测精度,且在检测精度和速度上取得了最高的权衡。实验结果表明,改进后的模型能对水稻叶片病害有效检测。 展开更多
关键词 改进ATSS模型 FPN-CARAFE ciou损失函数 水稻叶片病害
在线阅读 下载PDF
基于M3CFC-YOLOv7-tiny的矿工乘坐架空乘人装置违章行为识别研究 被引量:1
8
作者 卢纪峰 杨超宇 《煤矿安全》 CAS 北大核心 2024年第11期250-256,共7页
针对矿工乘坐架空乘人装置的违章行为自动识别任务存在煤矿井下轻量化设备部署、复杂环境下识别精度低、数据样本不平衡3个难题,提出了一种基于M3CFC-YOLOv7-tiny的轻量化矿工违章乘车行为智能识别算法。在向YOLOv7-tiny模型中引入Mobil... 针对矿工乘坐架空乘人装置的违章行为自动识别任务存在煤矿井下轻量化设备部署、复杂环境下识别精度低、数据样本不平衡3个难题,提出了一种基于M3CFC-YOLOv7-tiny的轻量化矿工违章乘车行为智能识别算法。在向YOLOv7-tiny模型中引入MobileNetV3-Small网络用于边缘端部署;通过融合CBAM注意力机制提升对矿工行为特征的感知与表达能力;改进CIOU损失函数为Focal-CIOU平衡正负样本损失贡献;并在自建的矿工违章乘车行为数据集上进行消融实验和对比实验。结果表明:改进模型相比于原始模型参数量降低30.6%,浮点计算量降低46.9%,检测精度提升2.3%,实现模型轻量化和实时检测;对比9种目标检测模型,改进模型在多项指标上的综合性能最优且不存在漏检和错检。 展开更多
关键词 煤矿安全 架空乘人装置 违章行为识别 M3CFC-YOLOv7-tiny MobileNetV3-Small CBAM注意力机制 Focal-ciou损失函数
在线阅读 下载PDF
面向无人驾驶场景下的道路多目标检测算法 被引量:1
9
作者 牛文杰 伊力哈木·亚尔买买提 《计算机应用与软件》 北大核心 2024年第8期282-288,共7页
针对无人驾驶场景下目标检测算法误检率高的问题,设计一种改进YOLOv3的多目标检测算法。该文在原始特征提取网络Darknet53中引入分组卷积核替换标准卷积核,降低了卷积操作的计算量;改进原始YOLOv3的特征融合方法,使不同尺度的特征层融... 针对无人驾驶场景下目标检测算法误检率高的问题,设计一种改进YOLOv3的多目标检测算法。该文在原始特征提取网络Darknet53中引入分组卷积核替换标准卷积核,降低了卷积操作的计算量;改进原始YOLOv3的特征融合方法,使不同尺度的特征层融合更加充分,对遮挡目标和小目标的检测效果有明显提升;构建CIoU位置损失函数,提示网络收敛效果。实验结果表明,改进的YOLOv3算法平均精确度提高了1.71%,误检率降低了12%,明显优于原始算法。 展开更多
关键词 无人驾驶 多目标检测 分组卷积 YOLOv3 ciou损失函数
在线阅读 下载PDF
基于YOLOv5s模型的边界框回归损失函数研究 被引量:16
10
作者 董恒祥 潘江如 +2 位作者 董芙楠 赵晴 郭鸿鑫 《现代电子技术》 北大核心 2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率... 针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。 展开更多
关键词 车辆检测 边界框回归损失函数 目标尺度 YOLOv5s ciou SIoU Focal-EIoU WIoU
在线阅读 下载PDF
改进YOLO v4模型在鱼类目标检测上的应用研究 被引量:9
11
作者 郑宗生 李云飞 +2 位作者 卢鹏 邹国良 王振华 《渔业现代化》 CSCD 2022年第1期82-88,96,共8页
鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函... 鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函数基础上构建了新的损失项,改进的损失函数使真实框与相交框呈相同宽高比进行回归,同时通过设置多锚点框模式,增强在特定尺寸面积上的检测效果。结果显示:改进YOLO v4模型的mAP(mean Average Precision)比原模型有较大提升,在自建数据集、Fish4Knowledge数据集和NCFM数据集上的mAP分别达到了94.22%、99.52%、92.16%。研究表明,改进YOLO v4模型可以快速准确地检测到鱼的位置和类别,检测速度满足实时的要求,可以为渔业精准养殖等提供参考。 展开更多
关键词 鱼类目标检测 ciou损失 损失函数 YOLO v4模型
在线阅读 下载PDF
改进YOLOv5算法在停车场火灾检测中的应用 被引量:7
12
作者 张震 晋志华 陈可鑫 《郑州大学学报(工学版)》 CAS 北大核心 2023年第4期16-21,共6页
针对传统传感器对于地下停车场火灾检测不及时、目标检测对小型火焰目标检测效果较差等问题,提出了一种改进的YOLOv5火灾检测算法。为了提高检测算法对小型火焰目标的检测效果,在YOLOv5s网络骨干中增加小目标检测层;为了增强火焰特征的... 针对传统传感器对于地下停车场火灾检测不及时、目标检测对小型火焰目标检测效果较差等问题,提出了一种改进的YOLOv5火灾检测算法。为了提高检测算法对小型火焰目标的检测效果,在YOLOv5s网络骨干中增加小目标检测层;为了增强火焰特征的表达,提出了一种基于CA注意力机制的间隔注意力结构;为了提升定位精度、降低目标漏检率,将GIoU替换为CIoU。设计了3组消融实验以及1组对比实验用来验证所提算法的有效性。实验结果表明:所提算法在自定义数据集上的mAP_(0.5)、召回率R分别为92%、96.9%。与YOLOv5s模型相比,所提算法在自定义火焰数据集上的mAP_(0.5)提升了1.8百分点,R提升了2.0百分点。所提算法权重大小仅为16.4 MB,帧率能达到113帧/s,具有较小的模型体积以及较快的检测速度,且能够准确检出小型火焰目标,有效提升了地下停车场火灾防范能力。 展开更多
关键词 地下停车场 火灾检测 YOLOv5 坐标注意力 ciou损失函数
在线阅读 下载PDF
基于YOLACT++的槟榔检测算法研究 被引量:1
13
作者 舒军 王祥 舒心怡 《湖北工业大学学报》 2022年第4期29-35,共7页
设计了一个基于YOLACT++深度学习算法的槟榔检测模型。针对传送带上采集的槟榔图片分割精度低和预测框不精确造成槟榔分级准确率低的问题。在模型主干网络中引入改进Res2Net模块,改善槟榔掩模分割精度。在模型边界框回归损失中引入CIoU... 设计了一个基于YOLACT++深度学习算法的槟榔检测模型。针对传送带上采集的槟榔图片分割精度低和预测框不精确造成槟榔分级准确率低的问题。在模型主干网络中引入改进Res2Net模块,改善槟榔掩模分割精度。在模型边界框回归损失中引入CIoU损失函数,提高预测框的检测精度。结果表明,改进模型的掩模mAP相较YOLACT++、Mask R-CNN、SOLOv2分别高出5.20%,4.09%,2.37%。预测框mAP相较YOLACT++、Mask R-CNN分别高出5.41%,4.90%。相较于模型改进前分级准确率提升2.12%。 展开更多
关键词 YOLACT++ 槟榔检测 Res2Net模块 ciou损失函数
在线阅读 下载PDF
基于YOLOv5s改进的口罩佩戴检测算法
14
作者 葛延良 李德鑫 +2 位作者 王冬梅 董太极 贺敏 《黑龙江大学自然科学学报》 CAS 2023年第3期362-368,共7页
由于新型冠状病毒肺炎的爆发,口罩成为人们日常生活中必需品。为了识别与检测人们是否佩戴口罩,提出了一种基于改进的YOLOv5s口罩佩戴检测算法。通过在YOLOv5s主干网络引入改进的自适应的协调注意力机制模块(Coordinate attention-activ... 由于新型冠状病毒肺炎的爆发,口罩成为人们日常生活中必需品。为了识别与检测人们是否佩戴口罩,提出了一种基于改进的YOLOv5s口罩佩戴检测算法。通过在YOLOv5s主干网络引入改进的自适应的协调注意力机制模块(Coordinate attention-activate or not,CA-A)提升网络的特征提取能力,解决了错误检测和漏检的问题。以新的损失函数AD-CIoU代替CIoU损失函数,作为回归损失函数,提升了边界框的定位精确度。实验表明,与原始模型算法相比,所提出的模型算法平均精度mAP值达到96.1%,提升了1.7%,具有较好的检测精度,可以满足目标检测应用需求。 展开更多
关键词 计算机视觉 YOLOv5s 口罩佩戴检测 CA-A注意力 AD-ciou损失函数
在线阅读 下载PDF
基于注意力和多级特征融合的铁路场景小尺度行人检测算法 被引量:9
15
作者 石瑞姣 陈后金 +3 位作者 李居朋 李艳凤 李丰 万成凯 《铁道学报》 EI CAS CSCD 北大核心 2022年第5期76-83,共8页
行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降... 行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降采样分支以利用高分辨率特征有效提取小尺度行人信息。其次,特征融合阶段引入通道-空间注意力机制以抑制低层特征中背景噪声干扰。最后,引入CIoU损失函数用于行人目标框的回归,解决均方误差损失函数存在的优化不一致及尺度敏感问题。实验结果表明,相较于经典YOLOv3以及现阶段主流目标检测算法,本算法具有更高的检测精度,在自建铁路私有数据集和Caltech公开数据集的各子集上对数平均漏检率均有明显降低。 展开更多
关键词 铁路行车安全 小尺度行人检测 多级特征融合 通道-空间注意力 ciou损失函数
在线阅读 下载PDF
基于改进YOLACT++的碧根果图像实例分割模型 被引量:3
16
作者 王祥 舒军 +1 位作者 雷建军 杨莉 《中南民族大学学报(自然科学版)》 CAS 北大核心 2022年第5期613-622,共10页
针对碧根果加工生产线上存在果壳掉落、堆叠及打光阴影造成碧根果图像检测精度低的问题,提出一种改进的YOLACT++实例分割算法.在主干网络中采用引入了注意力机制的Res2Net模块用于增强主干网络的特征提取能力,抑制无效背景信息的干扰;... 针对碧根果加工生产线上存在果壳掉落、堆叠及打光阴影造成碧根果图像检测精度低的问题,提出一种改进的YOLACT++实例分割算法.在主干网络中采用引入了注意力机制的Res2Net模块用于增强主干网络的特征提取能力,抑制无效背景信息的干扰;在边界框回归损失函数中引入CIoU损失函数,更精确地评价预测框与真实框的位置关系,用于提高预测框的检测精度;将DIoU与FastNMS结合,加强对重叠度高的候选框的筛选能力,改善预测框误检的问题.碧根果数据集上的实验表明:相比改进前,该算法的掩膜与预测框mAP分别提升5.18%、5.49%.COCO数据集上的实验结果表明:改进的算法对于不同尺寸物体分割精度优于BlendMask等先进算法. 展开更多
关键词 实例分割 碧根果检测 Res2Net模块 ciou损失函数
在线阅读 下载PDF
一种改进YOLOv5s的多尺度目标检测算法 被引量:10
17
作者 茆震 任玉蒙 +2 位作者 陈晓艳 任克营 赵昱炜 《传感技术学报》 CAS CSCD 北大核心 2023年第2期267-274,共8页
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提... 针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。 展开更多
关键词 深度学习 YOLOv5s 多尺度目标检测 CBAM注意力机制 ciou损失函数
在线阅读 下载PDF
基于轻量级卷积神经网络的手势识别检测 被引量:11
18
作者 牛雅睿 武一 +2 位作者 孙昆 卢昊 赵普 《电子测量技术》 北大核心 2022年第4期91-98,共8页
针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加... 针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加权双向特征金字塔网络改进特征融合网络,提升网络检测精度;最后使用CIoU损失函数作为边界框回归损失函数并加入Mosaic数据增强技术,加快模型收敛速度提升网络的鲁棒性。实验结果表明,改进后的模型大小仅为17.9MB,较原YOLOv3模型大小减小了92.4%,平均精确度提高了0.6%。因此新的检测方法在减少模型参数量的同时,还可保证模型的检测精度和效率,为手势识别检测提供理论参考。 展开更多
关键词 手势识别 轻量级网络 YOLOv3 Ghost模块 加权双向特征金字塔 ciou损失函数
原文传递
基于轻量级神经网络的目标检测研究 被引量:2
19
作者 黄志强 李军 张世义 《计算机工程与科学》 CSCD 北大核心 2022年第7期1265-1272,共8页
由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-me... 由于以CSPDarknet53为主干的YOLOv4神经网络参数量巨大,将其移植至手机等小型设备上时会降低其检测精度和速度,为了提高检测速度同时将检测精度控制在合理范围内,提出将原有的53层神经网络改为15层,并对其中的聚类算法进行优化,引入K-means++聚类算法对数据集进行分析,生成满足检测条件的Anchor Box;使用在负区间带有一定斜率的LeakyReLU激活函数代替存在梯度消失问题的Sigmoid激活函数,从而增强浅层网络的学习能力;同时考虑到Bounding Box与Anchor Box之间的中心距和宽高比具有一定的相关性,提出在原有损失函数的基础上增加相应的惩罚项生成L_(CIoU)损失函数,使损失函数在反向传播时梯度下降的方向性更好。实验结果表明,改进后的CSPDarknet15神经网络在VOC2007数据集上检测的平均精度达到83.94%,检测一幅图像的时间为3625 ms,与CSPDarknet53神经网络相比,检测速度提高了54.43%,能满足小型设备实时检测的速度和精度要求。 展开更多
关键词 YOLOv4神经网络 K-means++聚类算法 LeakyReLU激活函数 L ciou损失函数
在线阅读 下载PDF
面向密集场景结合TC-YOLOX的小目标检测方法 被引量:2
20
作者 李翔宇 王伟 +1 位作者 王峰萍 韩岩江 《电子测量技术》 北大核心 2023年第15期133-142,共10页
密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer E... 密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer Encode模块,不断更新目标权重实现增强目标特征信息,提高网络的特征提取能力;其次,在特征金字塔网络中增加卷积注意力机制模块,关注重要特征并抑制不必要特征,提高不同尺度目标的检测准确度;然后,采用CIoU代替IoU作为回归损失函数,使得模型训练过程中网络收敛更快,性能更好;最后在PASCAL VOC 2007数据集上验证。实验结果表明,所设计的TC-YOLOX模型能够有效的检测出多样化场景中正常、密集、稀疏、黑暗条件下的小目标物体,mAP和检测速度可以达到94.6%和38 fps,与原始模型相比提升了10.9%和1 fps,对多种密集场景下的小目标检测任务均具有较好的适用性。 展开更多
关键词 小目标检测 YOLOX 卷积注意力机制模块 Transformer Encode ciou回归损失函数
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部