Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illne...Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illness. This illness, termed a chronic inflammatory response syndrome (CIRS-WDB), is systemic with symptoms acquired from multiple organ systems. Treatment of CIRS-WDB has progressed rapidly as a better understanding of the inflammatory pathophysiology has led to targeted, sequential therapies. The fundamental basis of uncontrolled innate immune responses, the humoral deficiency of regulatory neuropeptides melanocyte stimulating hormone (MSH) or vasoactive intestinal polypeptide (VIP), seen in over 98% of pa tients, has not consistently responded to any treatment modality. Use of replacement VIP has been attempted anecdotally;VIP replacement therapies show promise in short term studies but longer therapies have not been attempted. Here we report an open label trial of 20 patients with refractory CIRS-WDB illness who took replacement VIP in a nasal spray for at least 18 months with confirmation of durable efficacy and absence of significant side effects. These 20 patients were similar in symptoms and lab find- ings to three previously published cohorts in- volving 1829 patients and 169 controls. Dosage of VIP was titrated downwards from four to zero doses a day to determine minimum effective dose, and retitrated upwards for maximum improvement over time. The trial showed that VIP therapy safely 1) reduced refractory symptoms to equal controls;2) corrected inflammatory parameters C4a, TGF beta-1, VEGF, MMP9;3) corrected estradiol, testosterone and 25-OH Vitamin D;4) returned pulmonary artery systolic pressure (PASP) during exercise to normal;and 5) enhanced quality of life in 100% of trial patients. Subsequent identification of correction of T-regulatory cell levels supports the potential role of VIP in both innate and adaptive immune function.展开更多
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo...Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
正交频分多址接入(OFDMA,Orthogonal Frequency Division Multiple Access)已经成为3G演进策略(LTE,Long Term Evolution)及4G技术的主要多址接入方式.本文研究了现有的OFDMA的切换算法,分析了其存在的不足之处.本文针对OFDMA多址技术特...正交频分多址接入(OFDMA,Orthogonal Frequency Division Multiple Access)已经成为3G演进策略(LTE,Long Term Evolution)及4G技术的主要多址接入方式.本文研究了现有的OFDMA的切换算法,分析了其存在的不足之处.本文针对OFDMA多址技术特点,提出新型的OFDMA切换算法(SBA,Sub-carriers Bidirectional Arrayed handover).并通过仿真验证新型切换算法的性能.仿真结果表明,新型OFDMA切换算法保证了用户在切换过程中的信道质量(CIR,Carrier-Interference Ratio),减少了切换信道的数目,从而提高了OFDMA系统性能.展开更多
文摘Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illness. This illness, termed a chronic inflammatory response syndrome (CIRS-WDB), is systemic with symptoms acquired from multiple organ systems. Treatment of CIRS-WDB has progressed rapidly as a better understanding of the inflammatory pathophysiology has led to targeted, sequential therapies. The fundamental basis of uncontrolled innate immune responses, the humoral deficiency of regulatory neuropeptides melanocyte stimulating hormone (MSH) or vasoactive intestinal polypeptide (VIP), seen in over 98% of pa tients, has not consistently responded to any treatment modality. Use of replacement VIP has been attempted anecdotally;VIP replacement therapies show promise in short term studies but longer therapies have not been attempted. Here we report an open label trial of 20 patients with refractory CIRS-WDB illness who took replacement VIP in a nasal spray for at least 18 months with confirmation of durable efficacy and absence of significant side effects. These 20 patients were similar in symptoms and lab find- ings to three previously published cohorts in- volving 1829 patients and 169 controls. Dosage of VIP was titrated downwards from four to zero doses a day to determine minimum effective dose, and retitrated upwards for maximum improvement over time. The trial showed that VIP therapy safely 1) reduced refractory symptoms to equal controls;2) corrected inflammatory parameters C4a, TGF beta-1, VEGF, MMP9;3) corrected estradiol, testosterone and 25-OH Vitamin D;4) returned pulmonary artery systolic pressure (PASP) during exercise to normal;and 5) enhanced quality of life in 100% of trial patients. Subsequent identification of correction of T-regulatory cell levels supports the potential role of VIP in both innate and adaptive immune function.
基金supported by the National High Technology Research and Development Programme of China(No.2006AA01Z216)
文摘Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.