Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of ...Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of CIP in water.The influence of various additives(CaO,Fe_(2)O_(3),SiO_(2),Al,and Fe)on CIP degradation efficiency was investigated.Additionally,six types of composite additives(Fe-CaO,Fe-Fe_(2)O_(3),Fe-SiO_(2),Fe-Al,Al-SiO_(2),and Al-CaO)were explored,with the composite of 20%Fe and 80%SiO_(2) exhibiting notable performance.The impacts of additive content,pH value,and co-existing ions on CIP degradation efficiency were investigated.Furthermore,the effectiveness of MCT in degrading other medical pollutants(norfloxacin,ofloxacin,and enrofloxacin)was verified.The transformations and changes in the crystal structure,oxidation state,microstructure,and morphology of the Fe-SiO_(2) composite additive were characterized using X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy techniques.This study proposed a sigmoid trend kinetic model(the Delogu model)that better elucidates the MCT process.Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature.This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.展开更多
Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC...Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC/g-C_(3)N_(4))were fabricated to achieve the efficient photocatalytic degradation and detoxification of ciprofloxacin(CIP)under simulated solar light.NaNbO_(3)nanocubes were in-situ transformed from Na_(2)Nb_(2)O_(6)·H_(2)O via thermal dehydration at the interface of g-C_(3)N_(4).The optimized NbNC/g-C_(3)N_(4)-1 was a type-I heterojunction,which showed a high conduction band(CB)level of−1.68 eV,leading to the efficient transfer of photogenerated electrons to O_(2) to produce primary reactive species,•O_(2)^(-).Density functional theory(DFT)calculations of the density of states indicated that C 2p and Nb 3d contributed to the CB,and 0.37 e^(-)transferred from NaNbO_(3)to g-C_(3)N_(4)in NbNC/g-C_(3)N_(4)based on the Mulliken population analysis of the built-in electric field intensity.NbNC/g-C_(3)N_(4)-1 had 3.3-and 2.3-fold of CIP degradation rate constants(k_(1)=0.173 min^(−1))compared with those of pristine g-C_(3)N_(4)and NaNbO_(3),respectively.In addition,N24,N19,and C5 in CIP with a high Fukui index were reactive sites for electrophilic attack by•O_(2)^(-),resulting in the defluorination and ring-opening of the piperazine moiety of the dominant degradation pathways.Intermediate/product identification,integrated with computational toxicity evaluation,further indicated a substantial detoxification effect during CIP degradation in the photocatalysis system.展开更多
The synergistic degradation of contaminants in water by photocatalysis and peroxydisulfate(PDS)activation has been proven to be a promising combined advanced oxidation technology.Consequently,the development of highly...The synergistic degradation of contaminants in water by photocatalysis and peroxydisulfate(PDS)activation has been proven to be a promising combined advanced oxidation technology.Consequently,the development of highly efficient photocatalysts that are activated by visible light and PDS is of immense importance.Herein,different proportions of cobalt-doped Bi_(2)Fe_(4)O_(9)(BFO@Co-x)photocatalysts were effectively synthesized for elimination of ciprofloxacin(CIP).The degradation efficiency of CIP achieved by the BFO@Co/Vis/PDS system attained 84.49%(k=0.0516 min−1)under 40 min light irradiation,outperforming the BFO@Co/Vis and PDS/Vis systems by a factor of 1.45 and 3.6,respectively.Characterization and photoelectric performance assessments revealed that the fabrication of BFO@Co-0.5 was successful,enhancing the photocatalytic degradation efficiency under the synergistic effect of PDS.Moreover,the BFO@Co/Vis/PDS system demonstrated favorable adaptability to various pH,inorganic anions,and humic acid in solution.Additionally,the degradation pathways of CIP and the toxicity of products were evaluated using LC/MS and T.E.S.T software,indicating a reduction in the toxicity of CIP degradation products.This study may provide insights into the application of photocatalyst/Vis/PDS combined systems in the field of water environmental treatment.展开更多
In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF...In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF).COF@CB@MPDA possessed good water dispersibility and was synthesized by the selfpolymerization of dopamine under alkaline conditions in the presence of the COF,CB and CF.The high surface area COF enhanced the adsorption of CF,whilst CB gave the composites high electrical conductivity to improve the sensitivity of the proposed COF@CB@MPDA/glassy carbon electrode(GCE)sensor.The specific recognition of CF by COF@CB@MPDA involved hydrogen bonding and van der Waals interactions.Under optimized conditions,the sensor showed a good linear relationship with CF concentration over the range of 5.0×10^(–7)and 1.0×10^(–4)mol/L,with a limit of detection(LOD)of 9.53×10^(–8)mol/L.Further,the developed sensor exhibited high selectivity,repeatability and stability for CF detection in milk and milk powders.The method used to fabricate the COF@CB@MPDA/GCE sensor could be easily adapted for the selective recognition and detection of other antibacterial agents and organic pollutants in the environment.展开更多
Efficient removal of antibiotics is of great significance for the sustainability of aquatic ecosystems.In this work,a new polyoxometalate-based metal-organic hybrid material[Ag_(3)L_(0.5)(HSiW_(12)O_(4)0)]·2C_(2)...Efficient removal of antibiotics is of great significance for the sustainability of aquatic ecosystems.In this work,a new polyoxometalate-based metal-organic hybrid material[Ag_(3)L_(0.5)(HSiW_(12)O_(4)0)]·2C_(2)H_(5)OH·2CH_(3)CN(Ag-L-SiW_(12))was prepared by using Keggin-type polyoxometalate anion and thiacalix[4]arene-based ligand(L)via solvothermal method.Subsequently,a composite heterojunction Ag-L-SiW_(12)@BiVO_(4)photoanode was fabricated by loading Ag-L-SiW_(12)on the surface of BiVO_(4).The photoelectrocatalytic degradation performance of ciprofloxacin(CIP)was explored under the simulated solar radiation.Remarkably,the CIP degradation efficiency reached 93%within 240 min using the optimal Ag-LSiW_(12)@BiVO_(4)photoanode,which is approximately 2 and 23 times those of pristine BiVO_(4)and Ag-L-SiW_(12),respectively.Furthermore,density functional theory(DFT)calculations were conducted to elucidate the role of Ag-L-SiW_(12)during the photoelectrocatalytic process.This work offers an example of the efficient composite photoelectrocatalysts for the treatment of antibiotic wastewater.展开更多
The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide ...The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide nanocomposite((Zn-Al)LDHs/3D-rGO)was synthesized through a feasible onepot hydrothermal method for CIP removal.The highly distributed(Zn-Al)LDHs flakes on the surface of 3D-rGO endow the resulted(Zn-Al)LDHs/3D-rGO with an excellent adsorption performance for CIP.The adsorption results showed that the adsorption process could be well interpreted by Temkin isothermal model and the pseudo second-order kinetics model.The maximal adsorption capacity of 20.01 mg·g^(-1)for CIP could be achieved under the optimal conditions optimized by response surface methodology(RSM).The inhibitory effect of co-existing ions on CIP adsorption were also discussed.The probable adsorption mechanism might be ascribed toπ-πinteractions,hydrogen bonding,electrostatic,and surface complexation.Regeneration tests showed that the obtained 3D porous material also possessed pronounced recyclability.The obtained(Zn-Al)LDHs/3D-rGO holds a great potential for removal of CIP from actual wastewater.展开更多
Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicit...Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicity and hazard to environments and human health.Herein,a novel CC/CoNi-LDH-10%Ce anode material was directly constructed through a simple and rapid electrodeposition strategy,serving as an efficacious electrocatalyst for removing ciprofloxacin(CIP)from aqueous solution.Such novel CC/CoNi-LDH-10%Ce anode delivered a higher charge transfer,relatively abundant oxygen vacancies,and a higher electrochemical active area.The as-fabricated CC/CoNi-LDH-10%Ce electrode achieved a substantially boosted CIP removal efficiency of 52.5%relative to that of pure CC at about 23.9%.Notably,doping an appropriate amount of Ce^(3+)can endow the pristine CC/CoNi-LDH with richer oxygen vacancies and excellent electrocatalytic performance.Additionally,the electrocatalytic oxidation of CIP was attributed to both direct oxidation on the electrode surface and indirect oxidation induced by the generated active species(superoxide radicals and hydroxyl radicals).This study provides a simple,universal and flexible tactic for other researchers in designing and manufacturing avenues of electrodes.展开更多
Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/...Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.展开更多
Piezo-photocatalysis is an emerging photocatalytic technology in which the piezoelectric electric field drives photogenerated carriers to separate,thereby improving the photocatalytic activity of the catalyst.Herein,s...Piezo-photocatalysis is an emerging photocatalytic technology in which the piezoelectric electric field drives photogenerated carriers to separate,thereby improving the photocatalytic activity of the catalyst.Herein,solid phase and one-step molten salt processes were used to prepare SrBi_(2)Nb_(2)O_(9)(SBN)powders with granular and sheet morphologies,respectively.The influence of micromorphology on the piezo-photocatalytic performances of SBN was determined by degrading ciprofloxacin hydrochloride(CIP).SBN nanosheets demonstrate remarkable piezo-photocatalytic performance,achieving an 89.13%CIP degradation rate in 60 min and an apparent rate constant of 34.73×10^(-3) min^(-1).This performance is approximately 2.65 times higher than that of granular SBN and outperformed many recently reported piezo-photocatalysts under similar experimental conditions.Free radical trapping techniques,electron spin resonance spectroscopy and liquid chromatography-mass spectrometry are utilized to study the potential paths and mechanisms of CIP degradation.Piezoresponse force microscopy and finite element simulation show that the piezo-response of SBN nanosheets is significantly higher than that of granular SBN.SBN nanosheets achieve high degradation efficiency due to their optimized conduction band positions and enhanced piezoelectric effect,facilitated by the two-dimensional nanosheet structures.In this work,the piezoelectric internal electric field of piezoelectric catalysts can be increased by tuning the catalyst morphology,which points to a possible direction for the production of high-performance piezoelectric catalysts.展开更多
Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage syste...Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).展开更多
Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]tri...Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.展开更多
Sulfide oxidation under aerobic conditions can produce active oxygen for the transformation of organic pollutants in aquatic environments.However,the catalytic performance of transition metal-supported carbon material...Sulfide oxidation under aerobic conditions can produce active oxygen for the transformation of organic pollutants in aquatic environments.However,the catalytic performance of transition metal-supported carbon material on this process is poor understood.This study found that Co-loaded carbon nanotubes(CNTs)was able to realize the efficient aerobic transformation of antibiotic ciprofloxacin(CIP)by sulfide,with the pseudo-first order reaction rate constant improved from 0.013 h^(-1)without catalyst to 0.44–0.71 h^(-1)with 100 mg/L Co-loaded CNTs.Singlet oxygen(^(1)O_(2))was the main active specie playing key roles in the process of CIP aerobic transformation with presence of Co-loaded CNTs.Mechanism studies indicated that the excellent electron transfer ability of Co-loaded CNTs might play an important role to promote the electron transfer and facilitate the formation of intermediate H_(2)O_(2)and^(1)O_(2).Additionally,the Co-loaded CNTs/sulfide system effectively reduced the acute toxicity of organic pollutant,and Co-loaded CNTs showed remarkable cycling stability and negligible leaching.This study gives a better understanding for the Co-loaded CNTs mediated aerobic antibiotics transformation by sulfide,and provide a reference for the application of Co-loaded carbon materials on organics aerobic transformation by sulfide.展开更多
In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
In this study,a stepwise oxidation system of potassium ferrate(K_(2)FeO_(4))combined with ozone(O+3)was used to degrade ciprofloxacin(CIP).The effects of pH and pre-oxidation time of K_(2)FeO_(4) on the evolution of K...In this study,a stepwise oxidation system of potassium ferrate(K_(2)FeO_(4))combined with ozone(O+3)was used to degrade ciprofloxacin(CIP).The effects of pH and pre-oxidation time of K_(2)FeO_(4) on the evolution of K_(2)FeO_(4) reduction products(iron(hydr)oxides)and CIP degradation were investigated.It was found that in addition to its own oxidation capacity,K_(2)FeO_(4) can also influence the treatment effect of CIP by changing the catalyst content.The presence of iron(hydr)oxides effectively enhanced the mineralization rate of CIP by catalyzing ozonation.The pH value can influence the content and types of the components with catalytic ozonation effect in iron(hydr)oxides.The K_(2)FeO_(4) pre-oxidation stage can produce more iron(hydr)oxides with catalytic components for subsequent ozonation,but the evolution of iron(hydr)oxides components was influenced by O_(3) treatment.It can also avoid the waste of oxidation capacity owing to the oxidation of iron(hydr)oxides by O_(3) and free radicals.The intermediate degradation products were identified by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS).Besides,the degradation pathways were proposed.Among the degradation products of CIP,the product with broken quinolone ring structure only appeared in the stepwise oxidation system.展开更多
The abused ciprofloxacin antibiotics have caused significant environmental damage.Although oxidative degradation of ciprofloxacin exhibits promising efficacy,it often entails excessive energy consumption.Hence,it is n...The abused ciprofloxacin antibiotics have caused significant environmental damage.Although oxidative degradation of ciprofloxacin exhibits promising efficacy,it often entails excessive energy consumption.Hence,it is necessary to explore an effective and ecologically sustainable degradation strategy.Herein,we demonstrated that g-C_(3)N_(4) decorated with the coordinated CeO_(2)and Co_(3)O_(4)(CeO_(2)-Co_(3)O_(4)/CN)exhibited effective ciprofloxacin photodegradation via in situ H_(2)O_(2) production and activation mechanism.Results indicate that the introduced CeO_(2) enhances the transference of photogenerated electrons to O_(2) by adjusting the oxygen vacancy of photocatalyst,thereby increasing the generation of superoxide radicals,which in turn generate H_(2)O_(2),resulting in a 22.4-fold increase in H_(2)O_(2) generation over g-C_(3)N_(4).Moreover,the in situ H_(2)O_(2)generation facilitated by CeO_(2) is confirmed to be essential for ciprofloxacin degradation via CeO_(2)-Co_(3)O_(4)/CN,as it provides enough oxidant for Co_(3)O_(4) to activate into hydroxyl radicals for the pollutants degradation.Ultimately,CeO_(2)-Co_(3)O_(4)/CN achieves a ciprofloxacin degradation ratio of 97.7%within 80 min.This study introduces a novel approach that combines H_(2)O_(2) generation and activation,offering an innovative perspective for achieving clean and efficient purification of antibiotic-contaminated water.展开更多
Aim Ciprofloxacin polylactic acid microspheres (CFX-PLA-MS) were preparedusing solvent evaporation method from a solid-in-oil-in-water emulsion system. Methods Orthogonalexperiment was used to optimize the method of C...Aim Ciprofloxacin polylactic acid microspheres (CFX-PLA-MS) were preparedusing solvent evaporation method from a solid-in-oil-in-water emulsion system. Methods Orthogonalexperiment was used to optimize the method of CFX-PLA-MS preparation. Microspheres werecharacterized in terms of morphology, size, encapsulation efficiency, drug loading and in vitro drugrelease. Results The physical state of CFX-PLA-MS was determined by scanning electron microscopy(SEM) and differential scanning calorimetry (DSC) . Microspheres formed were spherical with smoothsurfaces. Drug was enveloped in microspheres without mixing physically with PLA. The averageparticle size was 280.80 ± 0.15 μm, with over 90% of microspheres falling in the range of 250 -390 μm. The encapsulation efficiency was 65.8% ± 0.58% and the drug loading was 34.1% ± 0.51% .In vitro release study revealed a profile of sustained release of Ciprofloxacin from CFX-PLA-MS. Theaccumulated release percentage and half-life (T_(1/2) of Ciprofloxacin microspheres were 84.0% in53.2 h, and 31.9 h, respectively. Higuchi equation was Q= -0.0043 + 0.003 9 t^(1/2), r = 0.9941.Conclusion Ciprofloxacin microspheres have been successfully prepared and sustained release of CFXfrom microspheres is achieved.展开更多
This paper describes an effective method for determining ciprofloxacin lactate. An excess of sodium tetraphenylboron was added to precipitate ciprofloxacin lactate in HAc-NaAc buffer solution (pH=4.0). After filtering...This paper describes an effective method for determining ciprofloxacin lactate. An excess of sodium tetraphenylboron was added to precipitate ciprofloxacin lactate in HAc-NaAc buffer solution (pH=4.0). After filtering off the precipitate, the excessive sodium tetraphenylboron in the filtrate was titrated with cetyltrimethylammonium bromide standard solution, with bromophenol blue as indicator. The method is simple and rapid, it has been applied to the determination of ciprofloxacin lactate raw material with satisfactory results. The recovery was between 99.66% and 100.2%, the relative error was less than ±0.40%. Experiments showed that the method gave the same results as the approach using nonaqueous titration (ChP).展开更多
基金supported by the National Key Research and Development Program of China(Grants No.2021YFC2902701,2021YFC2902100,2019YFC1805600,2018YFC1801800)the Fundamental Research Funds for the Central Universities(Grant No.2022QN1051)+1 种基金the Shandong Provincial Major Science and Technology Innovation Project(Grant No.2021CXGC011206),the Key Project of the National Natural Science Foundation of China(Grant No.52130402).
文摘Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of CIP in water.The influence of various additives(CaO,Fe_(2)O_(3),SiO_(2),Al,and Fe)on CIP degradation efficiency was investigated.Additionally,six types of composite additives(Fe-CaO,Fe-Fe_(2)O_(3),Fe-SiO_(2),Fe-Al,Al-SiO_(2),and Al-CaO)were explored,with the composite of 20%Fe and 80%SiO_(2) exhibiting notable performance.The impacts of additive content,pH value,and co-existing ions on CIP degradation efficiency were investigated.Furthermore,the effectiveness of MCT in degrading other medical pollutants(norfloxacin,ofloxacin,and enrofloxacin)was verified.The transformations and changes in the crystal structure,oxidation state,microstructure,and morphology of the Fe-SiO_(2) composite additive were characterized using X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy techniques.This study proposed a sigmoid trend kinetic model(the Delogu model)that better elucidates the MCT process.Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature.This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.
基金the National Key Research and Development Program of China(Nos.2021YFA1202500 and 2022YFF1303004)Shenzhen Science and Technology Program(No.JCYJ20220531093205013)+6 种基金the National Natural Science Foundation of China(NSFC)(Nos.52100069,52270053 and 52200084)the Beijing Natural Science Foundation(No.8232035),the Beijing Nova Program(No.20220484215)the Beijing National Laboratory for Molecular Sciences(No.BNLMS2023011)Emerging Engineering Interdisciplinary-Young Scholars Project(Peking University),the Fundamental Research Funds for the Central Universities are greatly acknowledgedsupported by the High-Performance Computing Platform of Peking Universitythe National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab)are also acknowledgedsupported by the program of“Research on Advanced Treatment Technology of New Pollutants in Domestic Sewage of Residential District”.
文摘Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC/g-C_(3)N_(4))were fabricated to achieve the efficient photocatalytic degradation and detoxification of ciprofloxacin(CIP)under simulated solar light.NaNbO_(3)nanocubes were in-situ transformed from Na_(2)Nb_(2)O_(6)·H_(2)O via thermal dehydration at the interface of g-C_(3)N_(4).The optimized NbNC/g-C_(3)N_(4)-1 was a type-I heterojunction,which showed a high conduction band(CB)level of−1.68 eV,leading to the efficient transfer of photogenerated electrons to O_(2) to produce primary reactive species,•O_(2)^(-).Density functional theory(DFT)calculations of the density of states indicated that C 2p and Nb 3d contributed to the CB,and 0.37 e^(-)transferred from NaNbO_(3)to g-C_(3)N_(4)in NbNC/g-C_(3)N_(4)based on the Mulliken population analysis of the built-in electric field intensity.NbNC/g-C_(3)N_(4)-1 had 3.3-and 2.3-fold of CIP degradation rate constants(k_(1)=0.173 min^(−1))compared with those of pristine g-C_(3)N_(4)and NaNbO_(3),respectively.In addition,N24,N19,and C5 in CIP with a high Fukui index were reactive sites for electrophilic attack by•O_(2)^(-),resulting in the defluorination and ring-opening of the piperazine moiety of the dominant degradation pathways.Intermediate/product identification,integrated with computational toxicity evaluation,further indicated a substantial detoxification effect during CIP degradation in the photocatalysis system.
基金The National Key Research and Development Program of China(2020YFD1100501).
文摘The synergistic degradation of contaminants in water by photocatalysis and peroxydisulfate(PDS)activation has been proven to be a promising combined advanced oxidation technology.Consequently,the development of highly efficient photocatalysts that are activated by visible light and PDS is of immense importance.Herein,different proportions of cobalt-doped Bi_(2)Fe_(4)O_(9)(BFO@Co-x)photocatalysts were effectively synthesized for elimination of ciprofloxacin(CIP).The degradation efficiency of CIP achieved by the BFO@Co/Vis/PDS system attained 84.49%(k=0.0516 min−1)under 40 min light irradiation,outperforming the BFO@Co/Vis and PDS/Vis systems by a factor of 1.45 and 3.6,respectively.Characterization and photoelectric performance assessments revealed that the fabrication of BFO@Co-0.5 was successful,enhancing the photocatalytic degradation efficiency under the synergistic effect of PDS.Moreover,the BFO@Co/Vis/PDS system demonstrated favorable adaptability to various pH,inorganic anions,and humic acid in solution.Additionally,the degradation pathways of CIP and the toxicity of products were evaluated using LC/MS and T.E.S.T software,indicating a reduction in the toxicity of CIP degradation products.This study may provide insights into the application of photocatalyst/Vis/PDS combined systems in the field of water environmental treatment.
基金supported by the Project of Key R&D Program of Shandong Province(2023CXGC010712).Geoffrey I.N.
文摘In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF).COF@CB@MPDA possessed good water dispersibility and was synthesized by the selfpolymerization of dopamine under alkaline conditions in the presence of the COF,CB and CF.The high surface area COF enhanced the adsorption of CF,whilst CB gave the composites high electrical conductivity to improve the sensitivity of the proposed COF@CB@MPDA/glassy carbon electrode(GCE)sensor.The specific recognition of CF by COF@CB@MPDA involved hydrogen bonding and van der Waals interactions.Under optimized conditions,the sensor showed a good linear relationship with CF concentration over the range of 5.0×10^(–7)and 1.0×10^(–4)mol/L,with a limit of detection(LOD)of 9.53×10^(–8)mol/L.Further,the developed sensor exhibited high selectivity,repeatability and stability for CF detection in milk and milk powders.The method used to fabricate the COF@CB@MPDA/GCE sensor could be easily adapted for the selective recognition and detection of other antibacterial agents and organic pollutants in the environment.
基金supported by the National Natural Science Foundation of China(Grant No.21471029).
文摘Efficient removal of antibiotics is of great significance for the sustainability of aquatic ecosystems.In this work,a new polyoxometalate-based metal-organic hybrid material[Ag_(3)L_(0.5)(HSiW_(12)O_(4)0)]·2C_(2)H_(5)OH·2CH_(3)CN(Ag-L-SiW_(12))was prepared by using Keggin-type polyoxometalate anion and thiacalix[4]arene-based ligand(L)via solvothermal method.Subsequently,a composite heterojunction Ag-L-SiW_(12)@BiVO_(4)photoanode was fabricated by loading Ag-L-SiW_(12)on the surface of BiVO_(4).The photoelectrocatalytic degradation performance of ciprofloxacin(CIP)was explored under the simulated solar radiation.Remarkably,the CIP degradation efficiency reached 93%within 240 min using the optimal Ag-LSiW_(12)@BiVO_(4)photoanode,which is approximately 2 and 23 times those of pristine BiVO_(4)and Ag-L-SiW_(12),respectively.Furthermore,density functional theory(DFT)calculations were conducted to elucidate the role of Ag-L-SiW_(12)during the photoelectrocatalytic process.This work offers an example of the efficient composite photoelectrocatalysts for the treatment of antibiotic wastewater.
基金support from Basic research project of Education Department of Liaoning Province(LJKZ0256)Special Fund for Basic Scientific Research of Liaoning Province(LJKZSYLUGX027).
文摘The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide nanocomposite((Zn-Al)LDHs/3D-rGO)was synthesized through a feasible onepot hydrothermal method for CIP removal.The highly distributed(Zn-Al)LDHs flakes on the surface of 3D-rGO endow the resulted(Zn-Al)LDHs/3D-rGO with an excellent adsorption performance for CIP.The adsorption results showed that the adsorption process could be well interpreted by Temkin isothermal model and the pseudo second-order kinetics model.The maximal adsorption capacity of 20.01 mg·g^(-1)for CIP could be achieved under the optimal conditions optimized by response surface methodology(RSM).The inhibitory effect of co-existing ions on CIP adsorption were also discussed.The probable adsorption mechanism might be ascribed toπ-πinteractions,hydrogen bonding,electrostatic,and surface complexation.Regeneration tests showed that the obtained 3D porous material also possessed pronounced recyclability.The obtained(Zn-Al)LDHs/3D-rGO holds a great potential for removal of CIP from actual wastewater.
基金the funds granted by the Ningxia Natural Science Foundation(2023AAC05003,2024AAC03048,2024AAC03051)the National Natural Science Foundation of China(22108130,22368039)+1 种基金the Ningxia Key Research&Development Program(2023BDE03001)the Ningxia Overseas Returnee Innovation and Entrepreneurship Project for the financial support。
文摘Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicity and hazard to environments and human health.Herein,a novel CC/CoNi-LDH-10%Ce anode material was directly constructed through a simple and rapid electrodeposition strategy,serving as an efficacious electrocatalyst for removing ciprofloxacin(CIP)from aqueous solution.Such novel CC/CoNi-LDH-10%Ce anode delivered a higher charge transfer,relatively abundant oxygen vacancies,and a higher electrochemical active area.The as-fabricated CC/CoNi-LDH-10%Ce electrode achieved a substantially boosted CIP removal efficiency of 52.5%relative to that of pure CC at about 23.9%.Notably,doping an appropriate amount of Ce^(3+)can endow the pristine CC/CoNi-LDH with richer oxygen vacancies and excellent electrocatalytic performance.Additionally,the electrocatalytic oxidation of CIP was attributed to both direct oxidation on the electrode surface and indirect oxidation induced by the generated active species(superoxide radicals and hydroxyl radicals).This study provides a simple,universal and flexible tactic for other researchers in designing and manufacturing avenues of electrodes.
基金supported by the National Natural Science Foundation of China(Nos.52372090 and 52073177)the National Natural Science Foundation of Guangdong,China(No.2023A1515010947)Shenzhen Basic Research Program(No.JCYJ20220531102207017).
文摘Piezoelectric effect,plasma effect and semiconductor heterostructure are important strategies for enhanced photocatalytic performance.Herein,we developed a novel heterostructure piezoelectric photocatalyst,Ag/Ag_(2)S/BiFeO_(3)(AAS/BFO),for photocatalytic degradation of ciprofloxacin from water.Experimental results verified the enhancement of combining heterostructure piezoelectric polarization effect,which promotes efficient migration and separation of photogenerated carriers due to the localized surface plasmon resonance effect of Ag nanoparticles.Additionally,the introduction of Ag_(2)S constructs a new heterostructure,that enhances the electron transport rate and improves the separation efficiency on electron-hole pairs.Under ultrasonic stimulation and visible light irradiation,the degradation efficiencies of 15%-AAS/BFO towards ciprofloxacin,methyl orange and methylene blue are significantly enhanced compared to pure BFO fibers.The demonstrated AAS/BFO material based on the synergistic piezoelectric effect and plasmon heterostructure shows potential in efficient organic pollutants water treatment and transforming mechanical energy into chemical energy.
基金funded by the National Natural Science Foundation of China(22272057)Natural Science Foundation of Guangdong Province(2019A1515012129)Science and Technology Planning Project of Guangzhou City(202002030420).
文摘Piezo-photocatalysis is an emerging photocatalytic technology in which the piezoelectric electric field drives photogenerated carriers to separate,thereby improving the photocatalytic activity of the catalyst.Herein,solid phase and one-step molten salt processes were used to prepare SrBi_(2)Nb_(2)O_(9)(SBN)powders with granular and sheet morphologies,respectively.The influence of micromorphology on the piezo-photocatalytic performances of SBN was determined by degrading ciprofloxacin hydrochloride(CIP).SBN nanosheets demonstrate remarkable piezo-photocatalytic performance,achieving an 89.13%CIP degradation rate in 60 min and an apparent rate constant of 34.73×10^(-3) min^(-1).This performance is approximately 2.65 times higher than that of granular SBN and outperformed many recently reported piezo-photocatalysts under similar experimental conditions.Free radical trapping techniques,electron spin resonance spectroscopy and liquid chromatography-mass spectrometry are utilized to study the potential paths and mechanisms of CIP degradation.Piezoresponse force microscopy and finite element simulation show that the piezo-response of SBN nanosheets is significantly higher than that of granular SBN.SBN nanosheets achieve high degradation efficiency due to their optimized conduction band positions and enhanced piezoelectric effect,facilitated by the two-dimensional nanosheet structures.In this work,the piezoelectric internal electric field of piezoelectric catalysts can be increased by tuning the catalyst morphology,which points to a possible direction for the production of high-performance piezoelectric catalysts.
基金provided by the Bursa Technical University Scientific Research Project(Project no:211N010)College of Agriculture at Purdue University。
文摘Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).
文摘Two coordination polymers were synthesized by hydrothermal reaction,namely,[Cd(H_(3)cpbda)(2,2′‑bipy)(H_(2)O)]_(n)(1)and[Mn(H_(3)cpbda)(phen)(H_(2)O)]_(n)(2),where H_(5)cpbda=5,5′‑[(5‑carboxy‑1,3‑phenyl)bis(oxy)]triisophthalic acid,2,2′‑bipy=2,2′‑bipyridine,phen=1,10‑phenanthroline.The two complexes were characterized by single‑crystal X‑ray diffraction,powder diffraction,infrared spectroscopy,and thermogravimetric analysis.Complexes 1 and 2 are“V”‑shaped 1D chains,and the molecules form 2D(1)and 3D framework(2)structures through weakπ…πstacking.Furthermore,complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability.Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10^(-8)mol·L^(-1).CCDC:2359498,1;2359499,2.
基金the National Natural Science Foundation of China(Nos.52200186,U19A20108,52025101 and 52070025)China Postdoctoral Science Foundation(No.2021M693720)Chongqing Municipal Education Commission(No.KJCX2020001)for financially supporting this study。
文摘Sulfide oxidation under aerobic conditions can produce active oxygen for the transformation of organic pollutants in aquatic environments.However,the catalytic performance of transition metal-supported carbon material on this process is poor understood.This study found that Co-loaded carbon nanotubes(CNTs)was able to realize the efficient aerobic transformation of antibiotic ciprofloxacin(CIP)by sulfide,with the pseudo-first order reaction rate constant improved from 0.013 h^(-1)without catalyst to 0.44–0.71 h^(-1)with 100 mg/L Co-loaded CNTs.Singlet oxygen(^(1)O_(2))was the main active specie playing key roles in the process of CIP aerobic transformation with presence of Co-loaded CNTs.Mechanism studies indicated that the excellent electron transfer ability of Co-loaded CNTs might play an important role to promote the electron transfer and facilitate the formation of intermediate H_(2)O_(2)and^(1)O_(2).Additionally,the Co-loaded CNTs/sulfide system effectively reduced the acute toxicity of organic pollutant,and Co-loaded CNTs showed remarkable cycling stability and negligible leaching.This study gives a better understanding for the Co-loaded CNTs mediated aerobic antibiotics transformation by sulfide,and provide a reference for the application of Co-loaded carbon materials on organics aerobic transformation by sulfide.
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金supported by the National Natural Science Foundation of China (No.51878394)the Introduction and Cultivation Plan for Young Innovative Talents of Colleges and Universities by the Education Department of Shandong Province。
文摘In this study,a stepwise oxidation system of potassium ferrate(K_(2)FeO_(4))combined with ozone(O+3)was used to degrade ciprofloxacin(CIP).The effects of pH and pre-oxidation time of K_(2)FeO_(4) on the evolution of K_(2)FeO_(4) reduction products(iron(hydr)oxides)and CIP degradation were investigated.It was found that in addition to its own oxidation capacity,K_(2)FeO_(4) can also influence the treatment effect of CIP by changing the catalyst content.The presence of iron(hydr)oxides effectively enhanced the mineralization rate of CIP by catalyzing ozonation.The pH value can influence the content and types of the components with catalytic ozonation effect in iron(hydr)oxides.The K_(2)FeO_(4) pre-oxidation stage can produce more iron(hydr)oxides with catalytic components for subsequent ozonation,but the evolution of iron(hydr)oxides components was influenced by O_(3) treatment.It can also avoid the waste of oxidation capacity owing to the oxidation of iron(hydr)oxides by O_(3) and free radicals.The intermediate degradation products were identified by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS).Besides,the degradation pathways were proposed.Among the degradation products of CIP,the product with broken quinolone ring structure only appeared in the stepwise oxidation system.
基金financially supported by Shandong Provincial Natural Science Foundation(No.ZR2021QB123)Liaocheng University Start-up Fund for Doctoral Scientific Research(No.318052017)the Open Fund of State Key Lab of Pollution Control and Resource Reuse Research,China(No.PCRRF20002)。
文摘The abused ciprofloxacin antibiotics have caused significant environmental damage.Although oxidative degradation of ciprofloxacin exhibits promising efficacy,it often entails excessive energy consumption.Hence,it is necessary to explore an effective and ecologically sustainable degradation strategy.Herein,we demonstrated that g-C_(3)N_(4) decorated with the coordinated CeO_(2)and Co_(3)O_(4)(CeO_(2)-Co_(3)O_(4)/CN)exhibited effective ciprofloxacin photodegradation via in situ H_(2)O_(2) production and activation mechanism.Results indicate that the introduced CeO_(2) enhances the transference of photogenerated electrons to O_(2) by adjusting the oxygen vacancy of photocatalyst,thereby increasing the generation of superoxide radicals,which in turn generate H_(2)O_(2),resulting in a 22.4-fold increase in H_(2)O_(2) generation over g-C_(3)N_(4).Moreover,the in situ H_(2)O_(2)generation facilitated by CeO_(2) is confirmed to be essential for ciprofloxacin degradation via CeO_(2)-Co_(3)O_(4)/CN,as it provides enough oxidant for Co_(3)O_(4) to activate into hydroxyl radicals for the pollutants degradation.Ultimately,CeO_(2)-Co_(3)O_(4)/CN achieves a ciprofloxacin degradation ratio of 97.7%within 80 min.This study introduces a novel approach that combines H_(2)O_(2) generation and activation,offering an innovative perspective for achieving clean and efficient purification of antibiotic-contaminated water.
基金National Natural Science Foundation of Guangdong Province (020885,980504).
文摘Aim Ciprofloxacin polylactic acid microspheres (CFX-PLA-MS) were preparedusing solvent evaporation method from a solid-in-oil-in-water emulsion system. Methods Orthogonalexperiment was used to optimize the method of CFX-PLA-MS preparation. Microspheres werecharacterized in terms of morphology, size, encapsulation efficiency, drug loading and in vitro drugrelease. Results The physical state of CFX-PLA-MS was determined by scanning electron microscopy(SEM) and differential scanning calorimetry (DSC) . Microspheres formed were spherical with smoothsurfaces. Drug was enveloped in microspheres without mixing physically with PLA. The averageparticle size was 280.80 ± 0.15 μm, with over 90% of microspheres falling in the range of 250 -390 μm. The encapsulation efficiency was 65.8% ± 0.58% and the drug loading was 34.1% ± 0.51% .In vitro release study revealed a profile of sustained release of Ciprofloxacin from CFX-PLA-MS. Theaccumulated release percentage and half-life (T_(1/2) of Ciprofloxacin microspheres were 84.0% in53.2 h, and 31.9 h, respectively. Higuchi equation was Q= -0.0043 + 0.003 9 t^(1/2), r = 0.9941.Conclusion Ciprofloxacin microspheres have been successfully prepared and sustained release of CFXfrom microspheres is achieved.
文摘This paper describes an effective method for determining ciprofloxacin lactate. An excess of sodium tetraphenylboron was added to precipitate ciprofloxacin lactate in HAc-NaAc buffer solution (pH=4.0). After filtering off the precipitate, the excessive sodium tetraphenylboron in the filtrate was titrated with cetyltrimethylammonium bromide standard solution, with bromophenol blue as indicator. The method is simple and rapid, it has been applied to the determination of ciprofloxacin lactate raw material with satisfactory results. The recovery was between 99.66% and 100.2%, the relative error was less than ±0.40%. Experiments showed that the method gave the same results as the approach using nonaqueous titration (ChP).