The CIDNP observations indicated that photoreaction of methylfurans with chloranil resulted not only furylmethyl hydroxyphenyl ethers via radical pairs but induced furyl radical isomerization to the derivatives of cyc...The CIDNP observations indicated that photoreaction of methylfurans with chloranil resulted not only furylmethyl hydroxyphenyl ethers via radical pairs but induced furyl radical isomerization to the derivatives of cyclopropene,propadiene and pyran.展开更多
CIDNP techniques were applied to study the mechanism of photocycloadditions of 2-chloro-5-methoxybenzoquinone 1 with arylacetylenes 2-5 in benzene-d6 and acetonitrile-d6 respectively.
Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitiv...Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitivity due to the weak polarization of nuclear spins under conventional experiment conditions.Dynamic nuclear polarization(DNP)and chemically induced dynamic nuclear polarization(CIDNP)have been emerging as powerful in-situ hyperpolarization methods to boost NMR sensitivity.This review provides a brief overview of DNP mechanisms in the context of both solid-state and liquidstate.We delve into the molecular features of different polarizing agents and their impacts on DNP applications,which are now steadily progressing towards modern NMR magnetic field strengths and ambient temperatures.Furthermore,the progress of CIDNP,particularly photo-CIDNP as a potential alternative hyperpolarization technique of DNP,in studying protein dynamics and chemical reaction mechanisms,will be covered.This review also highlights the chemical diversity and experimental strategies crucial for these hyperpolarization techniques,showcasing their transformative role in NMR spectroscopy.展开更多
文摘The CIDNP observations indicated that photoreaction of methylfurans with chloranil resulted not only furylmethyl hydroxyphenyl ethers via radical pairs but induced furyl radical isomerization to the derivatives of cyclopropene,propadiene and pyran.
基金Financial support from the National Natural Science Foundation of China (No: 29975002) is gratefully acknowledged.
文摘CIDNP techniques were applied to study the mechanism of photocycloadditions of 2-chloro-5-methoxybenzoquinone 1 with arylacetylenes 2-5 in benzene-d6 and acetonitrile-d6 respectively.
文摘The photochemical[2+2]cycloaddition reaction of carbonyl compunds and alkenes was studied by photochemical induced dynamic nuclear spin polarization.
基金supported by the National Natural Science Foundation of China(Grant No.22403029)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20240475,2024M760922)+5 种基金supported by National Natural Science Foundation of China(Grant No.22174099)supported by the National Natural Science Foundation of China(Grant No.22273023)the National Key R&D Program of China(Grant No.2019YFA0905200)Shanghai Municipal Natural Science Foundation(Grant No.23ZR1418200)Natural Science Foundation of Chongqing,China(Grant No.CSTB2023NSCQ-MSX0616)Shanghai Frontiers Science Center of Molecule Intelligent Syntheses,and the Fundamental Research Funds for the Central Universities.
文摘Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitivity due to the weak polarization of nuclear spins under conventional experiment conditions.Dynamic nuclear polarization(DNP)and chemically induced dynamic nuclear polarization(CIDNP)have been emerging as powerful in-situ hyperpolarization methods to boost NMR sensitivity.This review provides a brief overview of DNP mechanisms in the context of both solid-state and liquidstate.We delve into the molecular features of different polarizing agents and their impacts on DNP applications,which are now steadily progressing towards modern NMR magnetic field strengths and ambient temperatures.Furthermore,the progress of CIDNP,particularly photo-CIDNP as a potential alternative hyperpolarization technique of DNP,in studying protein dynamics and chemical reaction mechanisms,will be covered.This review also highlights the chemical diversity and experimental strategies crucial for these hyperpolarization techniques,showcasing their transformative role in NMR spectroscopy.