期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于联邦学习与卷积神经网络的入侵检测模型 被引量:3
1
作者 罗文华 张晓龙 《信息安全研究》 CSCD 北大核心 2024年第7期642-648,共7页
网络入侵检测模型需要在大规模的网络流量数据中及时准确地识别出恶意数据,但单一机构的标签数据不足,各机构之间不愿共享数据,导致训练出的入侵检测模型性能不高.针对上述问题,提出一种基于联邦学习和1维卷积神经网络的入侵检测模型FL-... 网络入侵检测模型需要在大规模的网络流量数据中及时准确地识别出恶意数据,但单一机构的标签数据不足,各机构之间不愿共享数据,导致训练出的入侵检测模型性能不高.针对上述问题,提出一种基于联邦学习和1维卷积神经网络的入侵检测模型FL-1DCNN,在保证较高检测精度的同时,允许更多的参与方保护自身数据的隐私和安全,解决了标签数据不足的问题.FL-1DCNN模型首先对原始数据集进行一系列预处理操作,然后在联邦学习机制下将1维卷积神经网络作为各参与方的通用模型进行特征提取,最后通过Sigmoid分类器进行二分类.实验结果表明,FL-1DCNN模型在CICIDS2017数据集上的准确率达到96.5%,F1分数达到97.9%.此外,相较于传统集中式学习训练出的模型1DCNN,FL-1DCNN模型在训练时间上缩短了32.7%. 展开更多
关键词 入侵检测 联邦学习 深度学习 卷积神经网络 cicids2017数据集
在线阅读 下载PDF
Intrusion Detection System Using Classification Algorithms with Feature Selection Mechanism over Real-Time Data Traffic 被引量:1
2
作者 Gulab Sah Sweety Singh Subhasish Banerjee 《China Communications》 SCIE CSCD 2024年第9期292-320,共29页
The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learn... The key objective of intrusion detection systems(IDS)is to protect the particular host or network by investigating and predicting the network traffic as an attack or normal.These IDS uses many methods of machine learning(ML)to learn from pastexperience attack i.e.signatures based and identify the new ones.Even though these methods are effective,but they have to suffer from large computational costs due to considering all the traffic features,together.Moreover,emerging technologies like the Internet of Things(Io T),big data,etc.are getting advanced day by day;as a result,network traffics are also increasing rapidly.Therefore,the issue of computational cost needs to be addressed properly.Thus,in this research,firstly,the ML methods have been used with the feature selection technique(FST)to reduce the number of features by picking out only the important ones from NSL-KDD,CICIDS2017,and CIC-DDo S2019datasets later that helped to build IDSs with lower cost but with the higher performance which would be appropriate for vast scale network.The experimental result demonstrated that the proposed model i.e.Decision tree(DT)with Recursive feature elimination(RFE)performs better than other classifiers with RFE in terms of accuracy,specificity,precision,sensitivity,F1-score,and G-means on the investigated datasets. 展开更多
关键词 cicids2017 dataset CLASSIFIERS IDS ML NSL KDD dataset RFE
在线阅读 下载PDF
A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM
3
作者 Navaneetha Krishnan Muthunambu Senthil Prabakaran +3 位作者 Balasubramanian Prabhu Kavin Kishore Senthil Siruvangur Kavitha Chinnadurai Jehad Ali 《Computers, Materials & Continua》 SCIE EI 2024年第3期3089-3127,共39页
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this d... The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques. 展开更多
关键词 CYBERSECURITY intrusion detection machine learning leveraging long short-term memory(LLSTM) cicids2019 dataset innovative cyberattacks
在线阅读 下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
4
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means cicids2017 CICDDoS2019
在线阅读 下载PDF
基于LiCNN与BiLSTM的物联网入侵检测系统
5
作者 李奕蒙 滑斌 《物联网技术》 2024年第10期45-50,共6页
针对入侵检测系统中出现的局部特征提取能力不足问题,提出了一种侧抑制卷积神经网络模型(LiCNN),即在已有的CNN模型中加入侧抑制模块增强局部特征提取能力;针对一般卷积网络难以提取高维特征的问题,在LiCNN结构中引入逆残差概念,进一步... 针对入侵检测系统中出现的局部特征提取能力不足问题,提出了一种侧抑制卷积神经网络模型(LiCNN),即在已有的CNN模型中加入侧抑制模块增强局部特征提取能力;针对一般卷积网络难以提取高维特征的问题,在LiCNN结构中引入逆残差概念,进一步提高模型高维特征的提取能力;针对传统入侵检测模型存在的无法处理长距离依赖关系、难以并行化等问题,采用双向长短期记忆网络(BiLSTM)提取时序特征,通过增强上下文信息捕捉能力来处理长距离依赖关系,提高模型的预测精度。在公开数据集CICIDS2017上进行实验,经过对比传统模型以及现有的入侵检测方法表明,所提模型拥有较好的性能。模型预测准确率、召回率、F1值较高,证明了其有效性和可行性。 展开更多
关键词 物联网 网络安全 入侵检测系统 侧抑制卷积神经网络 双向长短期记忆网络 cicids2017数据集
在线阅读 下载PDF
Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection
6
作者 Arkan Kh Shakr Sabonchi 《Journal on Artificial Intelligence》 2024年第1期261-282,共22页
The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service(DDoS)attacks.The curren... The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service(DDoS)attacks.The current growth rate in the number of Internet of Things(IoT)attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices.In this regard,the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices.We preprocessed two datasets,CICIDS and UNSW-NB15,to remove noise and missing values.The next step is to perform feature extraction using principal component analysis(PCA).Next,we utilize a globalized firefly optimization algorithm(GFOA)to identify and select vectors that indicate low-rate attacks.We finally switch to the Naïve Bayes(NB)classifier at the classification stage to compare it with the traditional extreme gradient boosting classifier in this attack-dimension classifying scenario,demonstrating the superiority of GFOA.The study concludes that the method by GFOA scored outstandingly,with accuracy,precision,and recall levels of 89.76%,84.7%,and 90.83%,respectively,and an F-measure of 91.11%against the established method that had an F-measure of 64.35%. 展开更多
关键词 DDoS attack cicids dataset UNSW-NB15 dataset optimization algorithm Naïve Bayes classifier
在线阅读 下载PDF
基于集成降噪自编码的在线网络入侵检测模型 被引量:4
7
作者 吴德鹏 柳毅 《计算机应用研究》 CSCD 北大核心 2020年第11期3396-3400,共5页
针对神经网络在线入侵检测模型训练时易出现过拟合和泛化能力弱的问题,提出基于改进的集成降噪自编码在线入侵检测模型以区分正常和异常的流量模式。降噪自编码减少了训练数据与测试数据的差别,缓解过拟合问题,提高模型的性能。同时阈... 针对神经网络在线入侵检测模型训练时易出现过拟合和泛化能力弱的问题,提出基于改进的集成降噪自编码在线入侵检测模型以区分正常和异常的流量模式。降噪自编码减少了训练数据与测试数据的差别,缓解过拟合问题,提高模型的性能。同时阈值的选择方法直接影响网络入侵检测模型检测精度,该阈值采用随机方法确定,无须于离线入侵检测,无须通过完整的数据集即可选择最佳的阈值。采用CICIDS2017中的异常的数据流对模型进行测试,准确率分别为90.19%。结果表明,作为一种在线检测模型,提出的异常检测模型优于其他异常检测方法。 展开更多
关键词 网络安全 入侵检测 降噪自编码网络 cicids2017数据集
在线阅读 下载PDF
Improved Supervised and Unsupervised Metaheuristic-Based Approaches to Detect Intrusion in Various Datasets 被引量:1
8
作者 Ouail Mjahed Salah El Hadaj +1 位作者 El Mahdi El Guarmah Soukaina Mjahed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期265-298,共34页
Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervise... Due to the increasing number of cyber-attacks,the necessity to develop efficient intrusion detection systems(IDS)is more imperative than ever.In IDS research,the most effectively used methodology is based on supervised Neural Networks(NN)and unsupervised clustering,but there are few works dedicated to their hybridization with metaheuristic algorithms.As intrusion detection data usually contains several features,it is essential to select the best ones appropriately.Linear Discriminant Analysis(LDA)and t-statistic are considered as efficient conventional techniques to select the best features,but they have been little exploited in IDS design.Thus,the research proposed in this paper can be summarized as follows.a)The proposed approach aims to use hybridized unsupervised and hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset.Nevertheless,owing to the large size of the CICIDS2017 Dataset,only 25%of the data was used.b)As a feature selection method,the LDAperformancemeasure is chosen and combinedwith the t-statistic.c)For intrusion detection,unsupervised Fuzzy C-means(FCM)clustering and supervised Back-propagation NN are adopted.d)In addition and in order to enhance the suggested classifiers,FCM and NN are hybridized with the seven most known metaheuristic algorithms,including Genetic Algorithm(GA),Particle Swarm Optimization(PSO),Differential Evolution(DE),Cultural Algorithm(CA),Harmony Search(HS),Ant-Lion Optimizer(ALO)and Black Hole(BH)Algorithm.Performance metrics extracted from confusion matrices,such as accuracy,precision,sensitivity and F1-score are exploited.The experimental result for the proposed intrusion detection,based on training and test CICIDS2017 datasets,indicated that PSO,GA and ALO-based NNs can achieve promising results.PSO-NN produces a tested accuracy,global sensitivity and F1-score of 99.97%,99.95%and 99.96%,respectively,outperforming performance concluded in several related works.Furthermore,the best-proposed approaches are valued in the most recent intrusion detection datasets:CSE-CICIDS2018 and LUFlow2020.The evaluation fallouts consolidate the previous results and confirm their correctness. 展开更多
关键词 Classification neural networks Fuzzy C-means metaheuristic algorithm cicids2017 intrusion detection system
在线阅读 下载PDF
Ensemble Voting-Based Anomaly Detection for a Smart Grid Communication Infrastructure 被引量:1
9
作者 Hend Alshede Laila Nassef +1 位作者 Nahed Alowidi Etimad Fadel 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3257-3278,共22页
Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data ... Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%). 展开更多
关键词 Advanced metering infrastructure smart grid cyberattack ensemble voting anomaly detection system cicids2017
在线阅读 下载PDF
基于深度提升网络的入侵检测技术研究
10
作者 张如雪 缪祥华 《化工自动化及仪表》 CAS 2022年第6期787-793,共7页
为了在入侵检测时得到更高的精确率,使用极限梯度提升决策树XGBoost和梯度提升决策树GBDT构成集成学习的深度提升模型。利用CICIDS2017数据集对该模型进行实验,结果表明:与传统的5种方法相比,该方法在二分类和多分类任务上都表现出良好... 为了在入侵检测时得到更高的精确率,使用极限梯度提升决策树XGBoost和梯度提升决策树GBDT构成集成学习的深度提升模型。利用CICIDS2017数据集对该模型进行实验,结果表明:与传统的5种方法相比,该方法在二分类和多分类任务上都表现出良好的检测效果。 展开更多
关键词 入侵检测 集成学习 多假设 相对多数投票 重构误差 cicids2017数据集
在线阅读 下载PDF
基于自编码器算法的网络正常流量过滤方案
11
作者 闫晓宇 张靓 +1 位作者 李志敏 唐雯炜 《现代信息科技》 2021年第17期69-72,共4页
为解决网络应用层流量所带来的安全隐患与传统检测方法极大地消耗设备性能的问题,提出一种基于自编码器算法的网络正常流量过滤的解决方案。该方案对数据流量集进行规则预处理后,提取流行为上的统计特征,对提取的特征进行自编码器算法... 为解决网络应用层流量所带来的安全隐患与传统检测方法极大地消耗设备性能的问题,提出一种基于自编码器算法的网络正常流量过滤的解决方案。该方案对数据流量集进行规则预处理后,提取流行为上的统计特征,对提取的特征进行自编码器算法的模型过滤。实验结果表明,该方案可过滤掉大部分网络中的正常流量,相较于传统的流量检测方法,整体的过滤性能显著提升。 展开更多
关键词 网络正常流量 自编码器算法 cicids2017数据集 WIRESHARK
在线阅读 下载PDF
基于图卷积神经网络的网络安全态势感知研究 被引量:8
12
作者 葛睿博 路新喜 董凌鹤 《网络安全技术与应用》 2024年第5期35-38,共4页
随着网络技术的进步和网络应用的普及,网络安全问题日益严峻。为应对这一挑战,本文将图卷积神经网络(Graph ConvolutionalNetwork,GCN)应用于网络安全态势感知,此方法对复杂的网络系统表现出良好的适应性和解释能力。文本在前人的基础... 随着网络技术的进步和网络应用的普及,网络安全问题日益严峻。为应对这一挑战,本文将图卷积神经网络(Graph ConvolutionalNetwork,GCN)应用于网络安全态势感知,此方法对复杂的网络系统表现出良好的适应性和解释能力。文本在前人的基础上进行研究,通过使用基于随机森林的特征选择方法,将CICIDS2017入侵检测数据集原有83个特征项优化为69个,进一步调整超参数,并使用GCN增强模型对数据进行训练验证。结果显示,该模型在准确率和精确度对比前人研究结果有了大幅提高,在小数据量的攻击类别识别上也有更好的性能表现。 展开更多
关键词 图卷积神经网络 网络安全态势感知 入侵检测 cicids2017
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部