Nanomaterials exhibiting mimetic enzyme activity are promising candidates for colorimetric detection of chlorpyrifos.Herein,lignin-based FeN/C nanozymes(FeN/CNs)with peroxidase-like activity were synthesized by a one-...Nanomaterials exhibiting mimetic enzyme activity are promising candidates for colorimetric detection of chlorpyrifos.Herein,lignin-based FeN/C nanozymes(FeN/CNs)with peroxidase-like activity were synthesized by a one-pot method.Within the material,the nitrogen mainly exists as pyrrolyl nitrogen,which coordinates with iron to form an Fe-N structure that serves as the active site.The sensor incorporates acetylcholinesterase(AChE)to facilitate the restoration of oxidized 3,3',5',5'-tetramethylbenzidine(TMB),thereby restoring the blue solution to a color⁃less state.Furthermore,the presence of chlorpyrifos was found to inhibit AChE activity,causing the solution to turn blue again.A sensitive colorimetric method for chlorpyrifos has been established.The linear range of this method for the detection of chlorpyrifos was 0.90-80.00μg·g^(-1) and the limit of detection(LOD)was 0.13μg·g^(-1).When applied to real samples,the method achieved recoveries of 94.4%-109%for chlorpyrifos in soil,and relative standard devia⁃tions(RSD)of the assay were 3.6%-4.2%.Therefore,the constructed sensor holds significant potential for the reli⁃able detection of chlorpyrifos.展开更多
[ Objective] The study aimed to discuss the toxicity effect of abamectin and ehlorpyrifos on grass carp ( Ctenopharyngdon idllus ) and their interrela- tions. [ Method] Taking healthy and active grass carp as the ob...[ Objective] The study aimed to discuss the toxicity effect of abamectin and ehlorpyrifos on grass carp ( Ctenopharyngdon idllus ) and their interrela- tions. [ Method] Taking healthy and active grass carp as the object, the acute toxicity test of single pesticide and the combined toxicity test of two pesticides on grass carp were carried out. [ Result] The LC50 of abamectin and chlorpyrifes and the mixture of two pesticides against grass carp at 24, 48, 72 and 96 h were as follows: abamectin: 0.54, 0.49, 0. 17 and 0.10 rag/L; chlorpyrifes : 0.29, 0.21, 0.12 and 0.05 rag/L; the mixture of two pesticides : 1.22, 1.08, 0.99 and 0. 86 mg/L. The safe concentration (SC) of ahamectin, chlorpyrifos and the mixture of two pesticides were 0.010, 0.005 and 0.086 rag/L, respectively. The tox- icity of the pesticides in sequence was ablorpyrifos 〉 ahamectin 〉 the mixture of two pesticides. [ Conclusion ] Different concentrations of abamectin, chlorpyrifos and the mixture of two pesticides had remarkable effect on the growth of grass carp, the higher the concentration was, the greater the toxicity effect was. Ahamectin at low toxicity intensity had certain relief function on the toxicity of ehlorpyrifos.展开更多
Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels o...Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.展开更多
In practice, pesticides are usually applied simultaneously or one after another for crop protection, and this type of pesticide application often leads to a combined contamination of pesticide residues in the soil env...In practice, pesticides are usually applied simultaneously or one after another for crop protection, and this type of pesticide application often leads to a combined contamination of pesticide residues in the soil environment. A laboratory study was conducted to investigate the influence of chlorothalonil on chlorpyrifos degradation and its effects on soil bacterial, fungal, and actinomycete populations. Under the experimental conditions here, the half-lives of chlorpyrifos alone, and in combination with chlorothalonil, at the recommended and double dosages, were measured to be 3.24, 2.77, and 2.63 d, respectively. Chlorpyrifos degradation was not significantly altered by its combination with chlorothalonil. However, the inhibitory effect of chlorpyrifos on soil microorganisms was increased by its combination with chlorothalonil, and the increase was related to the levels of chlorothalonil added. Compared to those in the controls, the populations of bacteria, fungi, and actinomycetes were significantly reduced by 44.1%, 61.1%, and 72.8%, respectively, on the first day after treatment (DAT) by chlorpyrifos alone. With the addition of chlorothalonil, the inhibition was increased to 55.2%, 79.3%, and 85,8% at the recommended dosage, and 86.0%, 94.1%, and 90.8% at the double dosage, at one DAT, respectively. The results suggested that combined effects should be taken into account to assess the actual impacts of pesticide applications.展开更多
Microcapsules with chlorpyrifos cores and polyurea walls were synthesized with 2,4-tolylene diisocyanate as an oil-soluble monomer and ethylenediamine as a water-soluble monomer via an interracial polycondensation rea...Microcapsules with chlorpyrifos cores and polyurea walls were synthesized with 2,4-tolylene diisocyanate as an oil-soluble monomer and ethylenediamine as a water-soluble monomer via an interracial polycondensation reaction. The products were characterized by means of Fourier transform infrared spectrometry, ^13C NMR spectrometry and ^31p NMR spectrometry. The morphology, the particle size and the particle size distribution, and the thermal properties were also evaluated. The prepared microcapsules exhibit clear and smooth surfaces and have a mean diameter of 28. 13 μm. These microcapsules also have a good thermal stability for long-term use, and have potential applications in minimizing the toxicity of chlorpyrifos through controlled release.展开更多
The dissipation of chlorpyrifos in pakchoi-vegetated soil was investigated in the summer and autumn in a greenhouse and field, respectively. The dissipation of chlorpyrifos in pakchoi-grown soil was comparatively desc...The dissipation of chlorpyrifos in pakchoi-vegetated soil was investigated in the summer and autumn in a greenhouse and field, respectively. The dissipation of chlorpyrifos in pakchoi-grown soil was comparatively described by fitting the residue data to seven models (lst-order, 1.5th-order, 2nd-order, RF lst-order, RF 1.5th-order, RF 2nd-order, and bi-exponential or two-compartment models). Statistical analysis was performed using the SPSS 11.5 statistical package. The bi-exponential model was selected as the optimal model according to the coefficient of determination r^2. The dissipation half-lives (DT50) of chlorpyrifos in pakchoi-vegetated soil at the recommended dose in the summer and autumn, calculated by the bi-exponential model, were 0.6 and 1.2 d in a greenhouse, 0.4 and 1.0 d in a field, respectively; the corresponding values at double dose were 1.2 and 2.1 d in a greenhouse, 0.5 and 1.3 d in a field, respectively. The kinetic data indicate the dissipation of chlorpyrifos in pakchoi-grown soil in a greenhouse is slower than that in a field, and dissipates slower in the autumn than in the summer.展开更多
The dissipation of chlorpyrifos on pakchoi inside and outside greenhouse was studied. The decline curve of chlorpyrifos on pakchoi could be described as first-order kinetic. The experimental data showed that both the ...The dissipation of chlorpyrifos on pakchoi inside and outside greenhouse was studied. The decline curve of chlorpyrifos on pakchoi could be described as first-order kinetic. The experimental data showed that both the hermetic environment of greenhouse and season affected dissipation rates of chlorpyrifos on pakchoi. Chlorpyrifos declined faster outside greenhouse than inside greenhouse. Chlorpyrifos residues at pre-harvest time were below the maximum residue limits(MRLs) fixed in China, whereas the values inside greenhouse were higher than those outside greenhouse by almost 50%. The recommended pre-harvest time established under conditions of open field might not always fit to greenhouse production.展开更多
Earthworm toxicity tests are useful tools for terrestrial risk assessment but require a hierarchy of test designs that differ in effect levels (behavior, sublethal, lethal). In this study, the toxicity of chlorpyrif...Earthworm toxicity tests are useful tools for terrestrial risk assessment but require a hierarchy of test designs that differ in effect levels (behavior, sublethal, lethal). In this study, the toxicity of chlorpyrifos contaminated soil on earthworms was assessed. In addition to the acute and chronic tests, an avoidance response test was applied. Earthworms were exposed to sublethal and lethal concentration of chlorpyrifos, and evaluated for acute toxicity, growth, fecundity and avoidance response after a certain exposure period. The test methods covered all important ecological relevant endpoints (acute, chronic, behavioral). Concentration of 78.91 mg/kg, chlorpyrifos caused significant toxic effects in all test methods, but at lower test concentrations, only significant chronic toxic effects could be observed. In present study, chlorpyrifos had adverse effect on growth and fecundity in earthworm exposed to 5 mg/kg chlorpyrifos after eight weeks. The avoidance response test, however, showed significant repellent effects at concentration of 40 mg/kg chlorpyrifos. For chlorpyrifos, concentration affecting avoidance response was far greater than growth and fecundity, it seemed likely that earthworms were not able to escape from pesticide-contaminated soil into the clean soil in field and hence were exposed continuously to elevated concentrations of pesticides.展开更多
Objective:To evaluate the alleviating effects of melatonin on oxidative changes in the testes and pituitary gland induced by subacute chlopyrifos(CPF) exposure in rats.Methods:Forty adult male Wistar rats divided in...Objective:To evaluate the alleviating effects of melatonin on oxidative changes in the testes and pituitary gland induced by subacute chlopyrifos(CPF) exposure in rats.Methods:Forty adult male Wistar rats divided into 4 groups of 10 animals were used for the study.Croup I received soya oil(2 mL/kg) while group II was administered with melatonin(0.5 mg/kg).Group III was administered CPF only(8.5 mg/kg <sup> </sup>l/10th of the LD<sub>50</sub>) while group Ⅳ was pretreated with melatonin(0.5 mg/kg) and then exposed to CPF(8.5 mg/kg),10 min later.The regimens were administered by gavage once daily for a period of 28 d.At the end of the exposure period, the rats were sacrificed and the testicular tissues and pituitary glands were evaluated for the malonaldehyde(MDA) concentration and activities of superoxide dismutase(SOD) and catalase(CAT).Results:CPF increased MDA concentrations and reduced the activities of SOD and CAT in the testes and pituitary gland.Melatonin pretreatment reduced the testicular and pituitary MDA concentrations and improves the SOD and CAT activities.Conclusions:the study showed that subacute CPF-induced oxidative stress in the testes and pituitary glands were alleviated by melatonin due to its antioxidant property.展开更多
Toxicities were assessed for a pyrethroid (cypermethrin) and an organophosphate insecticide (chlorpyrifos) individually and in combination. A series of tests were conducted on different responses (acute, chronic,...Toxicities were assessed for a pyrethroid (cypermethrin) and an organophosphate insecticide (chlorpyrifos) individually and in combination. A series of tests were conducted on different responses (acute, chronic, behavioral) of earthworms of species Eisenia fetida andrei in the ecological risk assessment of these pesticides. The results showed that the toxicity of the mixture of cypermethrin and chlorpyrifos was significantly higher than either of these pesticides individually, especially on the earthworm’s chronic responses. At a concentration of 5 mg/kg, the mixture caused significant reductions on the growth and reproduction rates of earthworms, but did not cause any significant effect when the individual was tested. The increase in toxicity of the pesticide mixture means that the use of toxicity data obtained exclusively from single-pesticide experiments may underestimate the ecological risk of pesticides that actually present in the field.展开更多
Chlorpyrifos is an organophosphate pesticide that acts as an insecticide-acaricide by ingestion, contact, and inhalation, and is now widely used in greenhouse for the control of pests. The dissipation of chlorpyrifos ...Chlorpyrifos is an organophosphate pesticide that acts as an insecticide-acaricide by ingestion, contact, and inhalation, and is now widely used in greenhouse for the control of pests. The dissipation of chlorpyrifos in crops such as orange fruit (Martinez-Vidal et al., 1998), tomatoes(Aysal et al., 1999), soil and its effects on soil microbial characteristics (Singh et al., 2002) has been reported frequently. However, little information is available to describe impacts of chlorpyrifos on soil microbial population and enzyme activity in greenhouse. In this study, the effect of chlorpyrifos on soil bacteria, fungi, actinomycetes, and soil enzyme activity was investigated.展开更多
Degradation of pesticide residues (chlorpyrifos and fipronil) in rice from farm to fork and risk assessment for human health were studied to reveal the magnitude of risks faced by different populations of interest, ...Degradation of pesticide residues (chlorpyrifos and fipronil) in rice from farm to fork and risk assessment for human health were studied to reveal the magnitude of risks faced by different populations of interest, so that appropriate measures can be taken to control the risks, and to refine and update the human health risk assessment data while helping to determine the maximum residue level (MRL) value and harvest interval. Different dosages and treatments were used in field trials for the harvest residue test. Residue levels of postharvest-applied chlorpyrifos and fipronil during storage, exposure to sunlight, washing and boiling processes (boiled rice) were investigated for brown rice. The dietary exposure evaluation model (DEEM) was employed to estimate acute and chronic risks faced by different populations of interest. Percent of reference dose (POR) and margin of exposure (MOE) were calculated. A positive correlation between pesticide residues and the dosage and application frequency of pesticide was found in the field trials. Risk quotients indicate that multiple applications and double dosages of chlorpyrifos increase the risks to the entire population and prolong exposures to toxic concentrations. The concentration of pesticide residues decreased as a function of time, after sunlight exposure, storage, washing, and boiling processes. 91.6 and 96.16% degradations were achieved at the end of the experimental period for fipronil and chlorpyrifos, respectively. The boiling process played an important role in the degradation of these pesticides. The result of risk assessment to human health showed that harvest residues of chlorpyrifos in rice and acute dietary risks of chlopyrifos were of concern. The acute dietary (food only) risk estimated for chlorpyrifos as percent of acute population adjusted dose (aPAD) was frequently over 100%. The risk faced by boys under the age of 14 was higher than that for girls of the same age. For the subpopulation above age 14, the risk reversed. The chronic dietary risk from food alone showed that dietary exposures with fipronil were below the level of concern for the entire population, including children. The risk faced by rural residents was more serious than that for urbanite residents with the most sensitive populations being children and male residents who faced higher acute dietary risk than the other subpopulation groups. The harvest interval was found to be the critical measure to mitigate risk for all populations for safe rice eating. All risk levels decreased to acceptable levels when the harvest interval was extended to 14 d. To address these risks, a number of measures including reduced application rates (should not be doubled at single application), increased retreatment intervals (longer than 7 d) and extended interval of harvest (at least 14 d) will be needed. The MRL for fipronil in rice is recommended to be 0.01 mg kg 1 in accordance with Codex (ref).展开更多
Microplastics often co-occur with a variety of organic contaminants in aquatic environment and pose combined risks to aquatic wildlife. Here, we investigated joint effects of microsized polystyrene(mPS, 5 μm) and an ...Microplastics often co-occur with a variety of organic contaminants in aquatic environment and pose combined risks to aquatic wildlife. Here, we investigated joint effects of microsized polystyrene(mPS, 5 μm) and an organophosphate pesticide chlorpyrifos on zebrafish,using multiple endpoints at both fish individual and gut microbiota levels. It was revealed that mPS ingested by zebrafish accumulated in gut and liver, and caused oxidative stress, hyperactive swimming performance and histological damages in fish, and induced disorders and diversity alterations of the gut microbial community. More importantly, mPS exhibited considerable adsorption capacity against chlorpyrifos, and those adsorbing chlorpyrifos presented greater effects on fish individuals but no different effects on gut microbiota compared to single mPS exposure. Together with body residues of chlorpyrifos in zebrafish,it was proposed that the joint effects between mPS and chlorpyrifos were attributed to the chlorpyrifos released from mPS within zebrafish. The present results provided a comprehensive understanding of joint effects of mPS and contaminants co-occurring in the environment and emphasized the importance of considering the adsorbed chemicals in toxicological studies of microplastics.展开更多
Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of ...Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9–3.8 days(field) and 2.8–10.3 days(laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water 〈 straw 〈 soil, and soil was characterized as the major absorber. The ultimate residues in rice grain were below the maximum residue limit(MRL) with a harvest interval of 14 days. The chronic exposure for chlorpyrifos was rather low compared to the acceptable daily intake(ADI = 0.01 mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure,intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose(ARf D = 0.1 mg/kg bw). The estimated short-term intakes(ESTIs) were 0.78% and 0.25% of the ARf D for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers.展开更多
Atrazine (ATR) and chlorpyrifos (CPF) are widely used in agriculture, but have resulted in a series of toxicological and environmental problems. They were heavily used which have potential threat to fish and roden...Atrazine (ATR) and chlorpyrifos (CPF) are widely used in agriculture, but have resulted in a series of toxicological and environmental problems. They were heavily used which have potential threat to fish and rodents. Several recent laboratory studies have shown ATR and CPF could lead to oxidative damage, immunocyte reduced and inhibit acetylcholinesterase (ACHE). In order to clarify the toxicity of ATR and CPF, this paper summarized the adverse effects of ATR and CPF on reproduction, nerve and immune systems in fish.展开更多
In this work, a simple gold nanoparticles(Au NPs) based colorimetric biosensor was developed for chlorpyrifos(Chl) detection using an aptamer as the capture probe. The Chl-aptamer with low dissociation constant(Kd) of...In this work, a simple gold nanoparticles(Au NPs) based colorimetric biosensor was developed for chlorpyrifos(Chl) detection using an aptamer as the capture probe. The Chl-aptamer with low dissociation constant(Kd) of 58.59 ± 6.08 nmol/L was selected by ss DNA library immobilized systematic evolution of ligands by enrichment(SELEX). In the absence of Chl, the Chl-aptamer acted as the stabilizer for Au NPs in salt solution. In the presence of Chl, the highly specific Chl-aptamer bound with Chl targets immediately,thus a self-aggregation of Au NPs induced by salt was displayed. The fabricated colorimetric aptasensor exhibited an excellent sensitivity for Chl detection with the LOD as low as 14.46 nmol/L. In addition, the aptasensor was applied to test Chl in tap water, cucumber and cabbage samples, the excellent recoveries with acceptable RSD values below 5% demonstrated that the method can be considered as a promising tool for simple, rapid Chl detection.展开更多
Chlorpyrifos is a pesticide widely used in agricultural production with a relatively long residual half-life in soil.Addressing the problem of residual chlorpyrifos is of universal concern.In this study,rice hull bioc...Chlorpyrifos is a pesticide widely used in agricultural production with a relatively long residual half-life in soil.Addressing the problem of residual chlorpyrifos is of universal concern.In this study,rice hull biochar was used as an immobilized carrier to prepare the immobilized strain H27 for the remediation of chlorpyrifos-contamination soil.Soil microorganisms after remediation were investigated by ecotoxicological methods.The immobilized strain H27 had the highest removal rate of chlorpyrifos when 10%bacterial solution was added to the liquid medium containing 0.075-0.109 mm diameter biochar cultured for 22 hr.This study on the removal of chlorpyrifos by immobilized strain H27 showed that the initial concentration of chlorpyrifos in solution was 25mg/L,and the removal rate reached 97.4%after 7 days of culture.In the soil,the removal rate of the immobilized bacteria group increased throughout the experiment,which was significantly higher than that of the free bacteria and biochar treatment groups.The Biolog-ECO test,T-RFLP and RT-RCR were used to study the effects of the soil microbial community and nitrogen cycling functional genes during chlorpyrifos degradation.It was found that ICP group had the highest diversity index among the four treatment groups.The microflora of segment containing 114 bp was the dominant bacterial community,and the dominant microflora of the immobilized bacteria group was more evenly distributed.The influence of each treatment group on ammonia-oxidizing bacteria(AOB)was greater than on ammonia-oxidizing archaea(AOA).This study offers a sound scientific basis for the practical application of immobilized bacteria to reduce residual soil pesticides.展开更多
Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products...Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.展开更多
A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentration...A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.展开更多
Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands(CWs) under chlorp...Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands(CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1 mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis(DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity(HV) and richness(S) values distinctly increased after 30 days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H Vand S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis(PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results.Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable.展开更多
基金The Fundamental Research Funds for the Central Universities(2572022DJ01)Natural Science Foundation of Heilongjiang Province(LH2022B002)。
文摘Nanomaterials exhibiting mimetic enzyme activity are promising candidates for colorimetric detection of chlorpyrifos.Herein,lignin-based FeN/C nanozymes(FeN/CNs)with peroxidase-like activity were synthesized by a one-pot method.Within the material,the nitrogen mainly exists as pyrrolyl nitrogen,which coordinates with iron to form an Fe-N structure that serves as the active site.The sensor incorporates acetylcholinesterase(AChE)to facilitate the restoration of oxidized 3,3',5',5'-tetramethylbenzidine(TMB),thereby restoring the blue solution to a color⁃less state.Furthermore,the presence of chlorpyrifos was found to inhibit AChE activity,causing the solution to turn blue again.A sensitive colorimetric method for chlorpyrifos has been established.The linear range of this method for the detection of chlorpyrifos was 0.90-80.00μg·g^(-1) and the limit of detection(LOD)was 0.13μg·g^(-1).When applied to real samples,the method achieved recoveries of 94.4%-109%for chlorpyrifos in soil,and relative standard devia⁃tions(RSD)of the assay were 3.6%-4.2%.Therefore,the constructed sensor holds significant potential for the reli⁃able detection of chlorpyrifos.
基金Supported by Natural Science Foundation in Hunan Province(05JJ40035)~~
文摘[ Objective] The study aimed to discuss the toxicity effect of abamectin and ehlorpyrifos on grass carp ( Ctenopharyngdon idllus ) and their interrela- tions. [ Method] Taking healthy and active grass carp as the object, the acute toxicity test of single pesticide and the combined toxicity test of two pesticides on grass carp were carried out. [ Result] The LC50 of abamectin and chlorpyrifes and the mixture of two pesticides against grass carp at 24, 48, 72 and 96 h were as follows: abamectin: 0.54, 0.49, 0. 17 and 0.10 rag/L; chlorpyrifes : 0.29, 0.21, 0.12 and 0.05 rag/L; the mixture of two pesticides : 1.22, 1.08, 0.99 and 0. 86 mg/L. The safe concentration (SC) of ahamectin, chlorpyrifos and the mixture of two pesticides were 0.010, 0.005 and 0.086 rag/L, respectively. The tox- icity of the pesticides in sequence was ablorpyrifos 〉 ahamectin 〉 the mixture of two pesticides. [ Conclusion ] Different concentrations of abamectin, chlorpyrifos and the mixture of two pesticides had remarkable effect on the growth of grass carp, the higher the concentration was, the greater the toxicity effect was. Ahamectin at low toxicity intensity had certain relief function on the toxicity of ehlorpyrifos.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2006AA06Z386, 2007AA06Z306)the China Postdoctor-al Science Foundation (No. 20070421174)+2 种基金the National Natural Science Foundation of China (No. 30771254)the Zhejiang Provincial Natural Science Foundation (No.Z306260)the National Key Technologies R&D Pro-gram of China (No. 2006BAI09B03)
文摘Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.
文摘In practice, pesticides are usually applied simultaneously or one after another for crop protection, and this type of pesticide application often leads to a combined contamination of pesticide residues in the soil environment. A laboratory study was conducted to investigate the influence of chlorothalonil on chlorpyrifos degradation and its effects on soil bacterial, fungal, and actinomycete populations. Under the experimental conditions here, the half-lives of chlorpyrifos alone, and in combination with chlorothalonil, at the recommended and double dosages, were measured to be 3.24, 2.77, and 2.63 d, respectively. Chlorpyrifos degradation was not significantly altered by its combination with chlorothalonil. However, the inhibitory effect of chlorpyrifos on soil microorganisms was increased by its combination with chlorothalonil, and the increase was related to the levels of chlorothalonil added. Compared to those in the controls, the populations of bacteria, fungi, and actinomycetes were significantly reduced by 44.1%, 61.1%, and 72.8%, respectively, on the first day after treatment (DAT) by chlorpyrifos alone. With the addition of chlorothalonil, the inhibition was increased to 55.2%, 79.3%, and 85,8% at the recommended dosage, and 86.0%, 94.1%, and 90.8% at the double dosage, at one DAT, respectively. The results suggested that combined effects should be taken into account to assess the actual impacts of pesticide applications.
文摘Microcapsules with chlorpyrifos cores and polyurea walls were synthesized with 2,4-tolylene diisocyanate as an oil-soluble monomer and ethylenediamine as a water-soluble monomer via an interracial polycondensation reaction. The products were characterized by means of Fourier transform infrared spectrometry, ^13C NMR spectrometry and ^31p NMR spectrometry. The morphology, the particle size and the particle size distribution, and the thermal properties were also evaluated. The prepared microcapsules exhibit clear and smooth surfaces and have a mean diameter of 28. 13 μm. These microcapsules also have a good thermal stability for long-term use, and have potential applications in minimizing the toxicity of chlorpyrifos through controlled release.
文摘The dissipation of chlorpyrifos in pakchoi-vegetated soil was investigated in the summer and autumn in a greenhouse and field, respectively. The dissipation of chlorpyrifos in pakchoi-grown soil was comparatively described by fitting the residue data to seven models (lst-order, 1.5th-order, 2nd-order, RF lst-order, RF 1.5th-order, RF 2nd-order, and bi-exponential or two-compartment models). Statistical analysis was performed using the SPSS 11.5 statistical package. The bi-exponential model was selected as the optimal model according to the coefficient of determination r^2. The dissipation half-lives (DT50) of chlorpyrifos in pakchoi-vegetated soil at the recommended dose in the summer and autumn, calculated by the bi-exponential model, were 0.6 and 1.2 d in a greenhouse, 0.4 and 1.0 d in a field, respectively; the corresponding values at double dose were 1.2 and 2.1 d in a greenhouse, 0.5 and 1.3 d in a field, respectively. The kinetic data indicate the dissipation of chlorpyrifos in pakchoi-grown soil in a greenhouse is slower than that in a field, and dissipates slower in the autumn than in the summer.
基金The National Natural Science Foundation of China(No. 20377036 30230250 and 30270880)+1 种基金 the Major State Basic Research Development Programme of China(No. 2002CB410806) the Natural Science Foundation of Zhejiang Province(No. 301050) and Hangzhou Committee of Science and Technology(No. 2002112A08)
文摘The dissipation of chlorpyrifos on pakchoi inside and outside greenhouse was studied. The decline curve of chlorpyrifos on pakchoi could be described as first-order kinetic. The experimental data showed that both the hermetic environment of greenhouse and season affected dissipation rates of chlorpyrifos on pakchoi. Chlorpyrifos declined faster outside greenhouse than inside greenhouse. Chlorpyrifos residues at pre-harvest time were below the maximum residue limits(MRLs) fixed in China, whereas the values inside greenhouse were higher than those outside greenhouse by almost 50%. The recommended pre-harvest time established under conditions of open field might not always fit to greenhouse production.
基金Preject supported by the New Century Excellent Talents in Chinese Uni-versity (No. NCET-04-0914)the National Natural Science Foundationof China (No. 30640022)Yunnan Natural Sciences Foundations (No.2002C0001Z, 2005C0004Q).
文摘Earthworm toxicity tests are useful tools for terrestrial risk assessment but require a hierarchy of test designs that differ in effect levels (behavior, sublethal, lethal). In this study, the toxicity of chlorpyrifos contaminated soil on earthworms was assessed. In addition to the acute and chronic tests, an avoidance response test was applied. Earthworms were exposed to sublethal and lethal concentration of chlorpyrifos, and evaluated for acute toxicity, growth, fecundity and avoidance response after a certain exposure period. The test methods covered all important ecological relevant endpoints (acute, chronic, behavioral). Concentration of 78.91 mg/kg, chlorpyrifos caused significant toxic effects in all test methods, but at lower test concentrations, only significant chronic toxic effects could be observed. In present study, chlorpyrifos had adverse effect on growth and fecundity in earthworm exposed to 5 mg/kg chlorpyrifos after eight weeks. The avoidance response test, however, showed significant repellent effects at concentration of 40 mg/kg chlorpyrifos. For chlorpyrifos, concentration affecting avoidance response was far greater than growth and fecundity, it seemed likely that earthworms were not able to escape from pesticide-contaminated soil into the clean soil in field and hence were exposed continuously to elevated concentrations of pesticides.
基金Partly supported by Ahmadu Bello University Board of Research(Grant No.ABU/UBR/125/09)
文摘Objective:To evaluate the alleviating effects of melatonin on oxidative changes in the testes and pituitary gland induced by subacute chlopyrifos(CPF) exposure in rats.Methods:Forty adult male Wistar rats divided into 4 groups of 10 animals were used for the study.Croup I received soya oil(2 mL/kg) while group II was administered with melatonin(0.5 mg/kg).Group III was administered CPF only(8.5 mg/kg <sup> </sup>l/10th of the LD<sub>50</sub>) while group Ⅳ was pretreated with melatonin(0.5 mg/kg) and then exposed to CPF(8.5 mg/kg),10 min later.The regimens were administered by gavage once daily for a period of 28 d.At the end of the exposure period, the rats were sacrificed and the testicular tissues and pituitary glands were evaluated for the malonaldehyde(MDA) concentration and activities of superoxide dismutase(SOD) and catalase(CAT).Results:CPF increased MDA concentrations and reduced the activities of SOD and CAT in the testes and pituitary gland.Melatonin pretreatment reduced the testicular and pituitary MDA concentrations and improves the SOD and CAT activities.Conclusions:the study showed that subacute CPF-induced oxidative stress in the testes and pituitary glands were alleviated by melatonin due to its antioxidant property.
基金supported by the Program for New Century Excellent Talents in Chinese University(No.NCET-04-0914)the National Science Foundations of China(No.30760049,30570281)+1 种基金the Yunnan Natural Sciences Foundations(No.2009ZC078M,2008CD140)the Natural Sciences Foundations of Ministry of Education of Yunnan(No.08Z0028)
文摘Toxicities were assessed for a pyrethroid (cypermethrin) and an organophosphate insecticide (chlorpyrifos) individually and in combination. A series of tests were conducted on different responses (acute, chronic, behavioral) of earthworms of species Eisenia fetida andrei in the ecological risk assessment of these pesticides. The results showed that the toxicity of the mixture of cypermethrin and chlorpyrifos was significantly higher than either of these pesticides individually, especially on the earthworm’s chronic responses. At a concentration of 5 mg/kg, the mixture caused significant reductions on the growth and reproduction rates of earthworms, but did not cause any significant effect when the individual was tested. The increase in toxicity of the pesticide mixture means that the use of toxicity data obtained exclusively from single-pesticide experiments may underestimate the ecological risk of pesticides that actually present in the field.
文摘Chlorpyrifos is an organophosphate pesticide that acts as an insecticide-acaricide by ingestion, contact, and inhalation, and is now widely used in greenhouse for the control of pests. The dissipation of chlorpyrifos in crops such as orange fruit (Martinez-Vidal et al., 1998), tomatoes(Aysal et al., 1999), soil and its effects on soil microbial characteristics (Singh et al., 2002) has been reported frequently. However, little information is available to describe impacts of chlorpyrifos on soil microbial population and enzyme activity in greenhouse. In this study, the effect of chlorpyrifos on soil bacteria, fungi, actinomycetes, and soil enzyme activity was investigated.
基金supported by Jiangsu Pro-vincial Science and Technology Committee, China(BK2006167)
文摘Degradation of pesticide residues (chlorpyrifos and fipronil) in rice from farm to fork and risk assessment for human health were studied to reveal the magnitude of risks faced by different populations of interest, so that appropriate measures can be taken to control the risks, and to refine and update the human health risk assessment data while helping to determine the maximum residue level (MRL) value and harvest interval. Different dosages and treatments were used in field trials for the harvest residue test. Residue levels of postharvest-applied chlorpyrifos and fipronil during storage, exposure to sunlight, washing and boiling processes (boiled rice) were investigated for brown rice. The dietary exposure evaluation model (DEEM) was employed to estimate acute and chronic risks faced by different populations of interest. Percent of reference dose (POR) and margin of exposure (MOE) were calculated. A positive correlation between pesticide residues and the dosage and application frequency of pesticide was found in the field trials. Risk quotients indicate that multiple applications and double dosages of chlorpyrifos increase the risks to the entire population and prolong exposures to toxic concentrations. The concentration of pesticide residues decreased as a function of time, after sunlight exposure, storage, washing, and boiling processes. 91.6 and 96.16% degradations were achieved at the end of the experimental period for fipronil and chlorpyrifos, respectively. The boiling process played an important role in the degradation of these pesticides. The result of risk assessment to human health showed that harvest residues of chlorpyrifos in rice and acute dietary risks of chlopyrifos were of concern. The acute dietary (food only) risk estimated for chlorpyrifos as percent of acute population adjusted dose (aPAD) was frequently over 100%. The risk faced by boys under the age of 14 was higher than that for girls of the same age. For the subpopulation above age 14, the risk reversed. The chronic dietary risk from food alone showed that dietary exposures with fipronil were below the level of concern for the entire population, including children. The risk faced by rural residents was more serious than that for urbanite residents with the most sensitive populations being children and male residents who faced higher acute dietary risk than the other subpopulation groups. The harvest interval was found to be the critical measure to mitigate risk for all populations for safe rice eating. All risk levels decreased to acceptable levels when the harvest interval was extended to 14 d. To address these risks, a number of measures including reduced application rates (should not be doubled at single application), increased retreatment intervals (longer than 7 d) and extended interval of harvest (at least 14 d) will be needed. The MRL for fipronil in rice is recommended to be 0.01 mg kg 1 in accordance with Codex (ref).
基金supported by the National Natural Science Foundation of China (Nos. 21936004, 21806055)the Joint Funds of the National Natural Science Foundation of China (No. U1901220)+2 种基金the Guangdong Provincial Department of Science and Technology (No. 2019A1515011583)Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. SML2021SP208)Innovative Research Team of Department of Education of Guangdong Province (No. 2020KCXTD005)。
文摘Microplastics often co-occur with a variety of organic contaminants in aquatic environment and pose combined risks to aquatic wildlife. Here, we investigated joint effects of microsized polystyrene(mPS, 5 μm) and an organophosphate pesticide chlorpyrifos on zebrafish,using multiple endpoints at both fish individual and gut microbiota levels. It was revealed that mPS ingested by zebrafish accumulated in gut and liver, and caused oxidative stress, hyperactive swimming performance and histological damages in fish, and induced disorders and diversity alterations of the gut microbial community. More importantly, mPS exhibited considerable adsorption capacity against chlorpyrifos, and those adsorbing chlorpyrifos presented greater effects on fish individuals but no different effects on gut microbiota compared to single mPS exposure. Together with body residues of chlorpyrifos in zebrafish,it was proposed that the joint effects between mPS and chlorpyrifos were attributed to the chlorpyrifos released from mPS within zebrafish. The present results provided a comprehensive understanding of joint effects of mPS and contaminants co-occurring in the environment and emphasized the importance of considering the adsorbed chemicals in toxicological studies of microplastics.
基金supported by the National Natural Science Foundation of China (No. 31101458)
文摘Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9–3.8 days(field) and 2.8–10.3 days(laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water 〈 straw 〈 soil, and soil was characterized as the major absorber. The ultimate residues in rice grain were below the maximum residue limit(MRL) with a harvest interval of 14 days. The chronic exposure for chlorpyrifos was rather low compared to the acceptable daily intake(ADI = 0.01 mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure,intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose(ARf D = 0.1 mg/kg bw). The estimated short-term intakes(ESTIs) were 0.78% and 0.25% of the ARf D for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers.
文摘Atrazine (ATR) and chlorpyrifos (CPF) are widely used in agriculture, but have resulted in a series of toxicological and environmental problems. They were heavily used which have potential threat to fish and rodents. Several recent laboratory studies have shown ATR and CPF could lead to oxidative damage, immunocyte reduced and inhibit acetylcholinesterase (ACHE). In order to clarify the toxicity of ATR and CPF, this paper summarized the adverse effects of ATR and CPF on reproduction, nerve and immune systems in fish.
基金financially supported by the National Key Research and Development Program of China (No. 2018YFC1602905)the National Natural Science Foundation of China (Nos.61871180 and 61527806) for the financial supports。
文摘In this work, a simple gold nanoparticles(Au NPs) based colorimetric biosensor was developed for chlorpyrifos(Chl) detection using an aptamer as the capture probe. The Chl-aptamer with low dissociation constant(Kd) of 58.59 ± 6.08 nmol/L was selected by ss DNA library immobilized systematic evolution of ligands by enrichment(SELEX). In the absence of Chl, the Chl-aptamer acted as the stabilizer for Au NPs in salt solution. In the presence of Chl, the highly specific Chl-aptamer bound with Chl targets immediately,thus a self-aggregation of Au NPs induced by salt was displayed. The fabricated colorimetric aptasensor exhibited an excellent sensitivity for Chl detection with the LOD as low as 14.46 nmol/L. In addition, the aptasensor was applied to test Chl in tap water, cucumber and cabbage samples, the excellent recoveries with acceptable RSD values below 5% demonstrated that the method can be considered as a promising tool for simple, rapid Chl detection.
基金This work was supported by the National Natural Science Foundation of China(Nos.42277039 and 42207026)the Natural Science Foundation of Shandong Province,China(No.ZR2022QD098)the Special Funds of Taishan Scholar of Shandong Province,China.
文摘Chlorpyrifos is a pesticide widely used in agricultural production with a relatively long residual half-life in soil.Addressing the problem of residual chlorpyrifos is of universal concern.In this study,rice hull biochar was used as an immobilized carrier to prepare the immobilized strain H27 for the remediation of chlorpyrifos-contamination soil.Soil microorganisms after remediation were investigated by ecotoxicological methods.The immobilized strain H27 had the highest removal rate of chlorpyrifos when 10%bacterial solution was added to the liquid medium containing 0.075-0.109 mm diameter biochar cultured for 22 hr.This study on the removal of chlorpyrifos by immobilized strain H27 showed that the initial concentration of chlorpyrifos in solution was 25mg/L,and the removal rate reached 97.4%after 7 days of culture.In the soil,the removal rate of the immobilized bacteria group increased throughout the experiment,which was significantly higher than that of the free bacteria and biochar treatment groups.The Biolog-ECO test,T-RFLP and RT-RCR were used to study the effects of the soil microbial community and nitrogen cycling functional genes during chlorpyrifos degradation.It was found that ICP group had the highest diversity index among the four treatment groups.The microflora of segment containing 114 bp was the dominant bacterial community,and the dominant microflora of the immobilized bacteria group was more evenly distributed.The influence of each treatment group on ammonia-oxidizing bacteria(AOB)was greater than on ammonia-oxidizing archaea(AOA).This study offers a sound scientific basis for the practical application of immobilized bacteria to reduce residual soil pesticides.
基金supported by Natural Science Foundation of China(41907357)Natural Science Foundation of Shandong(ZR2019PC048)the Key R&D project of Shandong Province(2021TZXD007).
文摘Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.
基金supported by the National Natural Science Foundation of China(No.5017700)Provincial Nature Science Foundation of Shanxi(No.20051078)
文摘A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China 12th Five-Year Plan (No. 2012ZX07101007-005)the National Natural Science Foundation of China (Nos. 30870221, 51178452, 50909091)+1 种基金the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China (2010CDA066)the National Science Foundation for Distinguished Young Scholars of Hubei Province, China (No. 2010CDA093)
文摘Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands(CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1 mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis(DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity(HV) and richness(S) values distinctly increased after 30 days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H Vand S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis(PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results.Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable.