Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th...Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.展开更多
The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising c...The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generat...Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generated aerosol particles using a water spray system integrated with an innovative system for pre-injecting electrically charged mist in our facility.To simulate aerosol generation in reactor decommissioning,a high-power laser was used to irradiate various materials(including stainless steel,carbon steel,and concrete),generating aerosol particles that were agglomerated with injected water mist and subsequently scavenged by water spray.Experimental results demonstrate enhanced aerosol removal via aerosol-mist agglomeration,with charged mist significantly improving particle capture by increasing wettability and size.The average improvements for the stainless steel,carbon steel,and concrete were 40%,44%,and 21%,respectively.The results of experiments using charged mist with different polarities(both positive and negative)and different surface coatings reveal that the dominant polarity of aerosols varies with the irradiated materials,influenced by their crystal structure and electron emission properties.Notably,surface coatings such as ZrO_(2)and CeO_(2)were found to possibly alter aerosol charging characteristics,thereby affecting aerosol removal efficiency with charged mist configurations.The innovative aerosol-mist agglomeration approach shows promise in mitigating radiation exposure,ensuring environmental safety,and reducing contaminated water during reactor dismantling.This study contributes critical knowledge for the development of advanced aerosol management strategies for nuclear reactor decommissioning.The understanding obtained in this work is also expected to be useful for various environmental and chemical engineering applications such as gas decontamination,air purification,and pollution control.展开更多
In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lit...In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery.展开更多
A coal-loaded charge induction monitoring system is developed to effectively forecast the dynamic disasters caused by coal failure.Specifically,a digital finite impulse response(FIR)filter is designed to denoise and f...A coal-loaded charge induction monitoring system is developed to effectively forecast the dynamic disasters caused by coal failure.Specifically,a digital finite impulse response(FIR)filter is designed to denoise and filter the signal,and the time-frequency domain evolution of induced charge signals is analyzed during coal failure experiments.The quantitative relationships between the induced electric charge and stress-strain energy,and ultimately,between induced electric charge and coal deformation/failure,are revealed.Ultimately,the electric charge sensor exhibits high signal collection frequency and high sensitivity,and the FIR low-pass filter constructed in MATLAB effectively denoises and filters induced charge signals.The main frequency range of the white noise is 50-500 Hz,and the main frequency of the charge signal induced by coal deformation and failure is concentrated in the range of 0-50 Hz.The optimal distances for monitoring cubic and cylindrical raw coal samples using this sensor are 9 mm and 11 mm,respectively.Notably,strain energy is released faster when it can dissipate more readily,and induced charge pulses become denser when more intense signals produce large fluctuations.A method is proposed to identify coal deformation and failure based on changes in the induced electric charge.This study provides a new means of monitoring the early warning signs of dynamic coal mine disasters.Based on our experimental results and conclusions,a new method is proposed to identify coal deformation and failure based on changes in the induced electric charge.The precursor to the moment of coal failure can be identified by monitoring the amplitude of the induced charge,the dynamic trend of fluctuation,and the cumulative number of induced electric charge pulses during the process of coal deformation.展开更多
The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through spac...The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.展开更多
The kagome metals AV_(3)Sb_(5)(A=K,Rb,Cs)feature intertwined Dirac fermions,topological flat bands,and van Hove singularities(vHS)near the Fermi level,which give rise to a range of exotic,strongly correlated phenomena...The kagome metals AV_(3)Sb_(5)(A=K,Rb,Cs)feature intertwined Dirac fermions,topological flat bands,and van Hove singularities(vHS)near the Fermi level,which give rise to a range of exotic,strongly correlated phenomena such as charge density waves(CDW)and superconductivity.Although the vHS from V 3d states have been implicated in CDW formation,their three-dimensional nature and temperature evolution remain poorly understood.In this study,we used high-resolution angle-resolved photoemission spectroscopy and density functional theory to reveal pronounced out-of-plane dispersion of vHS and their temperature dependence in KV_(3)Sb_(5).The identified c-axis band folding and scattering channels were directly linked to the CDW order.These results demonstrate that the CDW transition in this family involves cooperative coupling between electron correlations and structural modulation along the c axis.This offers new insights into the interplay of topology,correlations,and lattice instabilities in kagome metals.展开更多
In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the s...In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the static electrochemical impedance spectroscopy(SEIS)under open circuit voltage(OCV)conditions,and the dynamic EIS(DEIS)under dynamic conditions are widely used to investigate charge transfer reactions in LIBs.In spite of great progresses achieved,it is still an open question how to decouple charge transfer reactions under dynamic conditions,especially under conditions of different charge/discharge rates and state of charges(SOCs).To address the above challenges,this work develops a unified framework to digitize,visualize,and finally decouple charge transfer reactions in LIBs under dynamic conditions.In detail:(i)a set of matrix-based numerical solutions to GCD,SEIS,and DEIS are deduced for LIBs;(ii)an open-source DEIS-Toolbox@LIB to digitize/visualize charge transfer reactions is developed;(iii)EIS under dynamic and OCV conditions are discriminated;and(iv)a dynamic decoupling of charge transfer reactions is achieved with respect to core parameters under dynamic conditions for LIBs.The developed framework serves to digitize/visualize/decouple charge transfer reactions under dynamic conditions,and then to unveil limiting factors of fast charge/discharge and triggering mechanisms of side reactions for batteries.展开更多
Semiconductor electronic devices are prone to charge accumulation during production and transportation,which usually causes device breakdown.Ionizers are widely used for electrostatic elimination,and utilizing semicon...Semiconductor electronic devices are prone to charge accumulation during production and transportation,which usually causes device breakdown.Ionizers are widely used for electrostatic elimination,and utilizing semiconductor silicon for the discharge needle material in ionizers can effectively prevent metal contamination.To investigate the discharge characteristics of silicon needles and their mode modulation mechanism,this study has established an experimental platform for silicon needle-plate discharge under positive polarity voltage.Discharge pulse parameters and optical signals were measured at varying electrode spacings.The experimental results reveal that silicon needle discharge progresses through four regimes:the spontaneous streamer,the periodic streamer,the cluster streamer,and the glow discharge.Among these,the pulse amplitude is most uniform and stable in the periodic streamer regime.In addition,shorter-gap discharge exhibits higher pulse amplitude and repetition frequency but is easier to transition into the filament regime.The formation process of a single pulse is closely related to the field strength in the ionization region near the needle tip.Hence,parameters such as the pulse rising edge time and falling edge time show minimal variation with voltage.The amount of charge generated per unit time is primarily influenced by the repetition frequency.Consequently,the electrostatic ionizer produces the highest,most stable,and most uniform charges if it operates in the periodic streamer regime.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charg...In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charge and discharge experiments were carried out to check feasibility and superiority of the new method. The results indicated that with the discharge pulse added the charger can charge quickly, the battery voltage and temperature can be properly controlled to prevent the battery being destroyed, and the capacity of the NiMH battery is greater than that of the battery without the discharge pulse added.展开更多
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho...Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.展开更多
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ...Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.展开更多
To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study ana...To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a...Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.展开更多
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg...Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.展开更多
文摘Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.
基金financial support from 2024 Domestic Visiting Scholar Program for Teachers'Professional Development in Universities(Grant No.FX2024022)National Natural Science Foundation of China(Grant No.61904043)。
文摘The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金financial support from the Nuclear Energy Science&Technology and Human Resource Development Project of the Japan Atomic Energy Agency/Collaborative Laboratories for Advanced Decommissioning Science(No.R04I034)The author Ruicong Xu appreciates the scholarship(financial support)from the China Scholarship Council(CSC,No.202106380073).
文摘Laser-induced aerosols,predominantly submicron in size,pose significant environmental and health risks during the decommissioning of nuclear reactors.This study experimentally investigated the removal of laser-generated aerosol particles using a water spray system integrated with an innovative system for pre-injecting electrically charged mist in our facility.To simulate aerosol generation in reactor decommissioning,a high-power laser was used to irradiate various materials(including stainless steel,carbon steel,and concrete),generating aerosol particles that were agglomerated with injected water mist and subsequently scavenged by water spray.Experimental results demonstrate enhanced aerosol removal via aerosol-mist agglomeration,with charged mist significantly improving particle capture by increasing wettability and size.The average improvements for the stainless steel,carbon steel,and concrete were 40%,44%,and 21%,respectively.The results of experiments using charged mist with different polarities(both positive and negative)and different surface coatings reveal that the dominant polarity of aerosols varies with the irradiated materials,influenced by their crystal structure and electron emission properties.Notably,surface coatings such as ZrO_(2)and CeO_(2)were found to possibly alter aerosol charging characteristics,thereby affecting aerosol removal efficiency with charged mist configurations.The innovative aerosol-mist agglomeration approach shows promise in mitigating radiation exposure,ensuring environmental safety,and reducing contaminated water during reactor dismantling.This study contributes critical knowledge for the development of advanced aerosol management strategies for nuclear reactor decommissioning.The understanding obtained in this work is also expected to be useful for various environmental and chemical engineering applications such as gas decontamination,air purification,and pollution control.
基金supported by the National Key Research and Development Plan(2023YFC3009900)the National Natural Science Foundation of China(52104197,52272396,52474233)+3 种基金Hongkong Scholar Program(XJ2022022)Research Grants Council of the Hong Kong Special Administrative Region(City U11214221)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)the Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)。
文摘In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery.
基金supported by the National Key Research and Development Project of the National Natural Science Foundation(Grant No.2022YFC3004605)the National Natural Science Foundation of China Youth Science Fund(Grant No.52104087).
文摘A coal-loaded charge induction monitoring system is developed to effectively forecast the dynamic disasters caused by coal failure.Specifically,a digital finite impulse response(FIR)filter is designed to denoise and filter the signal,and the time-frequency domain evolution of induced charge signals is analyzed during coal failure experiments.The quantitative relationships between the induced electric charge and stress-strain energy,and ultimately,between induced electric charge and coal deformation/failure,are revealed.Ultimately,the electric charge sensor exhibits high signal collection frequency and high sensitivity,and the FIR low-pass filter constructed in MATLAB effectively denoises and filters induced charge signals.The main frequency range of the white noise is 50-500 Hz,and the main frequency of the charge signal induced by coal deformation and failure is concentrated in the range of 0-50 Hz.The optimal distances for monitoring cubic and cylindrical raw coal samples using this sensor are 9 mm and 11 mm,respectively.Notably,strain energy is released faster when it can dissipate more readily,and induced charge pulses become denser when more intense signals produce large fluctuations.A method is proposed to identify coal deformation and failure based on changes in the induced electric charge.This study provides a new means of monitoring the early warning signs of dynamic coal mine disasters.Based on our experimental results and conclusions,a new method is proposed to identify coal deformation and failure based on changes in the induced electric charge.The precursor to the moment of coal failure can be identified by monitoring the amplitude of the induced charge,the dynamic trend of fluctuation,and the cumulative number of induced electric charge pulses during the process of coal deformation.
基金supported by the National Natural Science Foundation of China(No.22273057)the Universities Joint Laboratory of Guangdong,Hong Kong and Macao(No.2021LSYS009)+2 种基金the Natural Science Foundation of Guangdong Province(Nos.2022A1515011661,2023A1515012631)the Chemistry and Chemical Engineering Guangdong Laboratory(No.1922003)Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302009)。
文摘The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.
基金supported by the National Key R&D Program of China(Grant Nos.2023YFA1406304 and 2024YFA1408103)the National Science Foundation of China(Grant Nos.12494593 and 12004405)+5 种基金the Anhui Provincial Natural Science Foundation(Grant No.2408085J003)the National Key R&D Program of China(Grant No.2023YFA1406100)the open projects of the State Key Laboratory of Functional Materials for Informatics(Grant No.SKL2022)the China National Postdoctoral Program for Innovative Talents(BX20240348)support from the National Natural Science Foundation of China(Grant No.12404186)the Shanghai Sailing Program(Grant No.23YF1426900)。
文摘The kagome metals AV_(3)Sb_(5)(A=K,Rb,Cs)feature intertwined Dirac fermions,topological flat bands,and van Hove singularities(vHS)near the Fermi level,which give rise to a range of exotic,strongly correlated phenomena such as charge density waves(CDW)and superconductivity.Although the vHS from V 3d states have been implicated in CDW formation,their three-dimensional nature and temperature evolution remain poorly understood.In this study,we used high-resolution angle-resolved photoemission spectroscopy and density functional theory to reveal pronounced out-of-plane dispersion of vHS and their temperature dependence in KV_(3)Sb_(5).The identified c-axis band folding and scattering channels were directly linked to the CDW order.These results demonstrate that the CDW transition in this family involves cooperative coupling between electron correlations and structural modulation along the c axis.This offers new insights into the interplay of topology,correlations,and lattice instabilities in kagome metals.
基金supported by the National Natural Science Foundation of China(22479092,22078190)。
文摘In optimizing fast charge capability,mitigating side reaction rate,and unveiling particle cracking tolerance for Li-ion batteries(LIBs),the galvanostatic charge–discharge(GCD)at different charge/discharge rates,the static electrochemical impedance spectroscopy(SEIS)under open circuit voltage(OCV)conditions,and the dynamic EIS(DEIS)under dynamic conditions are widely used to investigate charge transfer reactions in LIBs.In spite of great progresses achieved,it is still an open question how to decouple charge transfer reactions under dynamic conditions,especially under conditions of different charge/discharge rates and state of charges(SOCs).To address the above challenges,this work develops a unified framework to digitize,visualize,and finally decouple charge transfer reactions in LIBs under dynamic conditions.In detail:(i)a set of matrix-based numerical solutions to GCD,SEIS,and DEIS are deduced for LIBs;(ii)an open-source DEIS-Toolbox@LIB to digitize/visualize charge transfer reactions is developed;(iii)EIS under dynamic and OCV conditions are discriminated;and(iv)a dynamic decoupling of charge transfer reactions is achieved with respect to core parameters under dynamic conditions for LIBs.The developed framework serves to digitize/visualize/decouple charge transfer reactions under dynamic conditions,and then to unveil limiting factors of fast charge/discharge and triggering mechanisms of side reactions for batteries.
基金financially supported by Wuxi Yanping Electronic Technology Co.Ltd.
文摘Semiconductor electronic devices are prone to charge accumulation during production and transportation,which usually causes device breakdown.Ionizers are widely used for electrostatic elimination,and utilizing semiconductor silicon for the discharge needle material in ionizers can effectively prevent metal contamination.To investigate the discharge characteristics of silicon needles and their mode modulation mechanism,this study has established an experimental platform for silicon needle-plate discharge under positive polarity voltage.Discharge pulse parameters and optical signals were measured at varying electrode spacings.The experimental results reveal that silicon needle discharge progresses through four regimes:the spontaneous streamer,the periodic streamer,the cluster streamer,and the glow discharge.Among these,the pulse amplitude is most uniform and stable in the periodic streamer regime.In addition,shorter-gap discharge exhibits higher pulse amplitude and repetition frequency but is easier to transition into the filament regime.The formation process of a single pulse is closely related to the field strength in the ionization region near the needle tip.Hence,parameters such as the pulse rising edge time and falling edge time show minimal variation with voltage.The amount of charge generated per unit time is primarily influenced by the repetition frequency.Consequently,the electrostatic ionizer produces the highest,most stable,and most uniform charges if it operates in the periodic streamer regime.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
文摘In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charge and discharge experiments were carried out to check feasibility and superiority of the new method. The results indicated that with the discharge pulse added the charger can charge quickly, the battery voltage and temperature can be properly controlled to prevent the battery being destroyed, and the capacity of the NiMH battery is greater than that of the battery without the discharge pulse added.
基金financial supports pro-vided by the National Natural Science Foundation of China(No.21905279)the Natural Science Foundation of Fujian Province(No.2020J05086).
文摘Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.
基金funded by the National Natural Science Founda-tion of China(52071109).
文摘Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation.
基金funded by the National Natural Science Foundation of China(Grant No. 12302437)Jiangsu Provincial Natural Science Foundation (Grant No.SBK2023045424)。
文摘To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BZ2022007)the National Natural Science Foundation of China(No.92261202)+1 种基金the Ministry of Science and Technology of the People’s Republic of China(No.2021YFE0114800)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2021-1027).
文摘Thermally activated delayed fluorescence(TADF)materials driven by a through-space charge transfer(TSCT)mechanism have garnered wide interest.However,access of TSCT-TADF molecules with longwavelength emission remains a formidable challenge.In this study,we introduce a novel V-type DA-D-A’emitter,Trz-mCzCbCz,by using a carborane scaffold.This design strategically incorporates carbazole(Cz)and 2,4,6-triphenyl-1,3,5-triazine(Trz)as donor and acceptor moieties,respectively.Theoretical calculations alongside experimental validations affirm the typical TSCT-TADF characteristics of this luminogen.Owing to the unique structural and electronic attributes of carboranes,Trz-mCzCbCz exhibits an orange-red emission,markedly diverging from the traditional blue-to-green emissions observed in classical Cz and Trz-based TADF molecules.Moreover,bright emission in aggregates was observed for Trz-mCzCbCz with absolute photoluminescence quantum yield(PLQY)of up to 88.8%.As such,we have successfully fabricated five organic light-emitting diodes(OLEDs)by utilizing Trz-mCzCbCz as the emitting layer.It is important to note that both the reverse intersystem crossing process and the TADF properties are profoundly influenced by host materials.The fabricated OLED devices reached a maximum external quantum efficiency(EQE)of 12.7%,with an emission peak at 592 nm.This represents the highest recorded efficiency for TSCT-TADF OLEDs employing carborane derivatives as emitting layers.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22C130001)the National Natural Science Foundation of China(32171887,and 52002028,and 52192610)+1 种基金the National Key Research and Development Project from Minister of Science&Technology(2021YFA0202704)Beijing Municipal Science&Technology Commission(Z171100002017017).
文摘Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.