A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic str...A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.展开更多
This paper presents an algorithm for analysis of the dielectric radomes. In this method, the radome is discretized by a regular grid with rooftop basic functions. The Volume Integral Equation (VIE) for 3D dielectric o...This paper presents an algorithm for analysis of the dielectric radomes. In this method, the radome is discretized by a regular grid with rooftop basic functions. The Volume Integral Equation (VIE) for 3D dielectric object is transformed to linear system by Galerkin’s testing formulation. Furthermore, the linear system is presented by Toeplitz matrix which can be solved by the Conjugate Gradient algorithm combined with Fast Fourier Transform (CG-FFT) iteratively. Also, the algorithm requires less computational complexity and memory. This paper simulates the mono-static Radar Cross Section of dielectric radome by the CG-FFT, which was validated against commercial software FEKO.展开更多
基金Supported by the Aeronautical Science Foundation of China(20121852031)
文摘A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.
文摘This paper presents an algorithm for analysis of the dielectric radomes. In this method, the radome is discretized by a regular grid with rooftop basic functions. The Volume Integral Equation (VIE) for 3D dielectric object is transformed to linear system by Galerkin’s testing formulation. Furthermore, the linear system is presented by Toeplitz matrix which can be solved by the Conjugate Gradient algorithm combined with Fast Fourier Transform (CG-FFT) iteratively. Also, the algorithm requires less computational complexity and memory. This paper simulates the mono-static Radar Cross Section of dielectric radome by the CG-FFT, which was validated against commercial software FEKO.