时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算...时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。展开更多
K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定。为此,提出一种快速密度峰值搜索算法CFSFDP(clustering by fast search and find of density peaks)优化初始中心的K-means算法。首先针对CFSFDP算法中截断距离的选取影响局...K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定。为此,提出一种快速密度峰值搜索算法CFSFDP(clustering by fast search and find of density peaks)优化初始中心的K-means算法。首先针对CFSFDP算法中截断距离的选取影响局部密度的计算这一缺点,提出用动力学中的势能替换数据点的局部密度;在此基础上,利用改进的CFSFDP算法选取初始聚类中心,实现K-means聚类。在UCI数据集和人工模拟数据集上的测试结果表明,优化后的新算法具有更好的聚类结果。展开更多
针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据...针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据时效果很不理想。而CFSFDP( clustering by fast search and find of density peaks)算法对维数较大的数据有良好的聚类能力,但是对于同类多峰的数据,分类效果稳定性变差,总体效果不够理想。为此,综合两种算法的优点,本文提出一种快速密度峰值搜索算法K-CFSFDP( clustering by fast search and find of density peaks)优化初始质心的K-means算法并在风力发电系统的故障诊断应用中获得了良好的效果。展开更多
文摘时空聚类算法是地理时空大数据挖掘的基础研究命题。针对传统CFSFDP聚类算法无法应用于时空数据挖掘的问题,本文提出一种时空约束的ST-CFSFDP(spatial-temporal clustering by fast search and find of density peaks)算法。在CFSFDP算法基础上加入时间约束,修改了样本属性值的计算策略,不仅解决了原算法单簇集多密度峰值问题,且可以区分并识别相同位置不同时间的簇集。本文利用模拟时空数据与真实的室内定位轨迹数据进行对比试验。结果表明,该算法在时间阈值90 s、距离阈值5 m的识别正确率高达82.4%,较经典ST-DBCSAN、ST-OPTICS及ST-AGNES聚类算法准确率分别提高了5.2%、4.2%和7.6%。
文摘K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定。为此,提出一种快速密度峰值搜索算法CFSFDP(clustering by fast search and find of density peaks)优化初始中心的K-means算法。首先针对CFSFDP算法中截断距离的选取影响局部密度的计算这一缺点,提出用动力学中的势能替换数据点的局部密度;在此基础上,利用改进的CFSFDP算法选取初始聚类中心,实现K-means聚类。在UCI数据集和人工模拟数据集上的测试结果表明,优化后的新算法具有更好的聚类结果。
文摘针对风电系统故障种类多,故障信号数据维数大,诊断正确率低的问题,提出一种利用密度峰值优化初始质心K-means分类算法进行诊断;K-means算法的初始聚类质心是随机选取的,聚类质心选取质量严重影响聚类结果的稳定性,当聚类较大维数的数据时效果很不理想。而CFSFDP( clustering by fast search and find of density peaks)算法对维数较大的数据有良好的聚类能力,但是对于同类多峰的数据,分类效果稳定性变差,总体效果不够理想。为此,综合两种算法的优点,本文提出一种快速密度峰值搜索算法K-CFSFDP( clustering by fast search and find of density peaks)优化初始质心的K-means算法并在风力发电系统的故障诊断应用中获得了良好的效果。