Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to dev...Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well.展开更多
This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consump...This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050000)Special Program for Informatization of Chinese Academy of Sciences(No.INF0-115-C01-SDB3-02)
文摘Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well.
文摘This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.