Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increas...Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increases resistance but also has adverse effects on their propulsion performance.On the basis of coupled computational fluid dynamics(CFD)and the discrete element method(DEM),this paper aims to numerically investigate the resistance and propulsion performance of a polar in a brash ice channel while considering the rotation status of the propeller by both experimental and numerical methods.Both ship resistance and ice motion under Froude numbers of 0.0557,0.0696,0.0836,0.975,and 0.1114 are studied when the propeller does not rotate.The influences of the rotating propeller on the ice brash resistance and flow are discussed.The thrust due to the propeller and ice resistance in the equilibrium state are also predicted.The errors between the thrust and total resistance are approximately 1.0%,and the maximum error between the simulated and predicted total resistance is 3.7%,which validates the CFD-DEM coupling method quite well.This work could provide a theoretical basis for the initial design of polar ships with low ice class notation and assist in planning navigation for merchant polar ships in brash ice fields.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
A resolved CFD-DEM method is proposed to simulate the fluid-particle interaction for large complex granules.The airflow in a vertical sinter fixed bed is numerically studied using this method.The multi-sphere clumped ...A resolved CFD-DEM method is proposed to simulate the fluid-particle interaction for large complex granules.The airflow in a vertical sinter fixed bed is numerically studied using this method.The multi-sphere clumped method is used to create irregular sinter particles in DEM.The immersed boundary method and dynamic cell refinement are applied to describe the fluid flow around particles with higher resolution,by which the fluid-particle interaction can be simulated more accurately.The simulation results presented the packing voidage distributions and the airflow fields in the sinter beds of different single and mixed particle size ranges.The bed pressure drops were simulated and the results were compared with the corresponding experimental ones.The good agreement indicated that the proposed resolved CFD-DEM method is an effective tool to model the fluid-particle interaction for irregular large granules in the gas-solid multi-phase systems.展开更多
Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence o...Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence of the target fluid grid on the particle's drag force.A fluidized bed of rod-like particles was chosen as a typical case to investigate the effect of different fluid grid scales on various fluidized bed characteristic parameters.The calculation performance of the semi-resolved and unre-solved CFD-DEM coupling algorithm on key fluidized bed characteristic parameters such as average pressure drop,particle frequency distribution with bed height,and particle orientation distribution were compared.It was found that the semi-resolved CFD-DEM coupling algorithm gradually obtained results with higher consistency with decreasing fluid grid scale for key parameters such as particle frequency distribution with bed height,particle orientation distribution,and time-history mixing index,exhibiting a phenomenon similar to grid independence in fluid simulation.By comparing with experimental results,it was verified that the semi-resolved CFD-DEM coupling algorithm can be applied to simulate multi-granular gas-solid systems with fluid grid scales equivalent to particle scales.This algorithm solves the limitation of fluid grid scale in the unresolved CFD-DEM coupling framework and improves the grid adaptability of the CFD-DEM coupling simulation algorithm.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
Iron ore pellets are the main feedstock in ironmaking processes. While extensive research has addressed numerical modeling of the iron ore pellet induration process, little effort has been made to describe the intrica...Iron ore pellets are the main feedstock in ironmaking processes. While extensive research has addressed numerical modeling of the iron ore pellet induration process, little effort has been made to describe the intricate thermochemical processes occurring within the reactor starting from the pellet and particularly at the intra-particle scale. In this regard, discrete-continuous methods like CFD-DEM can generate more realistic, irregular particle assemblies, which leads to significantly more accurate predictions of voidage variation, wall effects, temperature distribution, and associated mass transfer phenomena. This study presents a numerical model based on computational fluid dynamics (CFD) coupled with the discrete element method (DEM) to simulate the thermal induration process of iron ore pellets. The presented model solving heat, mass, and momentum conservation equations for both continuous and discrete phases, provides detailed information on the thermochemical aspects of the process. Pilot-scale induration experiment was conducted to validate model predictions in terms of thermal history and final conversion fraction. It was found that inlet charge specifications, such as particle and pellet size, significantly impact the productivity of pelletizing plants, highlighting the potential of the presented model to optimize the process and improve plant productivity.展开更多
The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resi...The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resistance of automotive coatings,such experiment-based methods suffer from poor repeatability and high cost.The main purpose of this work is to develop a CFD-DEM-wear coupling method to accurately and efficiently simulate stone chipbehaviorof automotive coatings inagravelometer test.Toachieve this end,an approach coupling an unresolved computational fluid dynamics(CFD)method and a discrete element method(DEM)are employed to account for interactions between fluids and large particles.In order to accurately describe large particles,a rigid connection particle method is proposed.In doing so,each actual non-spherical particle can be approximately described by rigidly connecting a group of non-overlapping spheres,and particle-fluid interactions are simulated based on each component sphere.An erosion wear model is used to calculate the impact damage of coatings based on particlecoating interactions.Single spherical particle tests are performed to demonstrate the feasibility of the proposed rigid connection particle method under various air pressure conditions.Then,the developed CFD-DEM-wear model is applied to reproduce the stone chip behavior of two standard tests,i.e.,DIN 55996-1 and SAE-J400-2002 tests.Numerical results are found to be in good agreement with experimental data,which demonstrates the capacity of our developed method in stone chip resistance evaluation.Finally,parametric studies are conducted to numerically investigate the influences of initial velocity and test panel orientation on impact damage of automotive coatings.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0107000)the Fundamental Research Funds for the Central Universities(Grant No.HYGJXM202319).
文摘Polar marine equipment plays an important role in Arctic engineering,especially in the development of polar ships and ice-class propellers.When polar ships navigate in brash ice channels,the brash ice not only increases resistance but also has adverse effects on their propulsion performance.On the basis of coupled computational fluid dynamics(CFD)and the discrete element method(DEM),this paper aims to numerically investigate the resistance and propulsion performance of a polar in a brash ice channel while considering the rotation status of the propeller by both experimental and numerical methods.Both ship resistance and ice motion under Froude numbers of 0.0557,0.0696,0.0836,0.975,and 0.1114 are studied when the propeller does not rotate.The influences of the rotating propeller on the ice brash resistance and flow are discussed.The thrust due to the propeller and ice resistance in the equilibrium state are also predicted.The errors between the thrust and total resistance are approximately 1.0%,and the maximum error between the simulated and predicted total resistance is 3.7%,which validates the CFD-DEM coupling method quite well.This work could provide a theoretical basis for the initial design of polar ships with low ice class notation and assist in planning navigation for merchant polar ships in brash ice fields.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金the financial support for this work from the National Natural Science Foundation of China(grant No.52104340)China Postdoctoral Science Foundation(grant No.2020M672425)+1 种基金The Key Research and Development Program of Hubei Province(grant No.2022BCA058)Natural Science Foundation of Hubei Province(grant No.2020CFB133).
文摘A resolved CFD-DEM method is proposed to simulate the fluid-particle interaction for large complex granules.The airflow in a vertical sinter fixed bed is numerically studied using this method.The multi-sphere clumped method is used to create irregular sinter particles in DEM.The immersed boundary method and dynamic cell refinement are applied to describe the fluid flow around particles with higher resolution,by which the fluid-particle interaction can be simulated more accurately.The simulation results presented the packing voidage distributions and the airflow fields in the sinter beds of different single and mixed particle size ranges.The bed pressure drops were simulated and the results were compared with the corresponding experimental ones.The good agreement indicated that the proposed resolved CFD-DEM method is an effective tool to model the fluid-particle interaction for irregular large granules in the gas-solid multi-phase systems.
基金funded by the National Natural Science Foundation of China (grant No.11972250)the National Key R&D Program of China (grant Nos.22YFE0207000 and 2022YFC3004505).
文摘Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence of the target fluid grid on the particle's drag force.A fluidized bed of rod-like particles was chosen as a typical case to investigate the effect of different fluid grid scales on various fluidized bed characteristic parameters.The calculation performance of the semi-resolved and unre-solved CFD-DEM coupling algorithm on key fluidized bed characteristic parameters such as average pressure drop,particle frequency distribution with bed height,and particle orientation distribution were compared.It was found that the semi-resolved CFD-DEM coupling algorithm gradually obtained results with higher consistency with decreasing fluid grid scale for key parameters such as particle frequency distribution with bed height,particle orientation distribution,and time-history mixing index,exhibiting a phenomenon similar to grid independence in fluid simulation.By comparing with experimental results,it was verified that the semi-resolved CFD-DEM coupling algorithm can be applied to simulate multi-granular gas-solid systems with fluid grid scales equivalent to particle scales.This algorithm solves the limitation of fluid grid scale in the unresolved CFD-DEM coupling framework and improves the grid adaptability of the CFD-DEM coupling simulation algorithm.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金support from the Ministry of Science,Research and Technology(MSRT)of Iran[grant number:99-4109].
文摘Iron ore pellets are the main feedstock in ironmaking processes. While extensive research has addressed numerical modeling of the iron ore pellet induration process, little effort has been made to describe the intricate thermochemical processes occurring within the reactor starting from the pellet and particularly at the intra-particle scale. In this regard, discrete-continuous methods like CFD-DEM can generate more realistic, irregular particle assemblies, which leads to significantly more accurate predictions of voidage variation, wall effects, temperature distribution, and associated mass transfer phenomena. This study presents a numerical model based on computational fluid dynamics (CFD) coupled with the discrete element method (DEM) to simulate the thermal induration process of iron ore pellets. The presented model solving heat, mass, and momentum conservation equations for both continuous and discrete phases, provides detailed information on the thermochemical aspects of the process. Pilot-scale induration experiment was conducted to validate model predictions in terms of thermal history and final conversion fraction. It was found that inlet charge specifications, such as particle and pellet size, significantly impact the productivity of pelletizing plants, highlighting the potential of the presented model to optimize the process and improve plant productivity.
基金supported by the National Key R&D Program of China(No.2017YFE0117300)the Science and Technology Planning Project of Guangzhou(No.201804020065)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.311021013).
文摘The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resistance of automotive coatings,such experiment-based methods suffer from poor repeatability and high cost.The main purpose of this work is to develop a CFD-DEM-wear coupling method to accurately and efficiently simulate stone chipbehaviorof automotive coatings inagravelometer test.Toachieve this end,an approach coupling an unresolved computational fluid dynamics(CFD)method and a discrete element method(DEM)are employed to account for interactions between fluids and large particles.In order to accurately describe large particles,a rigid connection particle method is proposed.In doing so,each actual non-spherical particle can be approximately described by rigidly connecting a group of non-overlapping spheres,and particle-fluid interactions are simulated based on each component sphere.An erosion wear model is used to calculate the impact damage of coatings based on particlecoating interactions.Single spherical particle tests are performed to demonstrate the feasibility of the proposed rigid connection particle method under various air pressure conditions.Then,the developed CFD-DEM-wear model is applied to reproduce the stone chip behavior of two standard tests,i.e.,DIN 55996-1 and SAE-J400-2002 tests.Numerical results are found to be in good agreement with experimental data,which demonstrates the capacity of our developed method in stone chip resistance evaluation.Finally,parametric studies are conducted to numerically investigate the influences of initial velocity and test panel orientation on impact damage of automotive coatings.