In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj...In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability.展开更多
For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics...For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.展开更多
对于高超声速飞行器在临近空间形成的连续与稀薄混合流场,DSMC(direct simulation of Monte Carlo)方法需要消耗巨大的计算资源,CFD(computational fluid dynamics)方法,无法对稀薄效应进行准确模拟。在对连续/稀薄耦合数值方法深入研...对于高超声速飞行器在临近空间形成的连续与稀薄混合流场,DSMC(direct simulation of Monte Carlo)方法需要消耗巨大的计算资源,CFD(computational fluid dynamics)方法,无法对稀薄效应进行准确模拟。在对连续/稀薄耦合数值方法深入研究的基础上,提出了一套非结构网格的CFD/DSMC耦合方法。该方法具有通用强、适应性良好的特点,进行耦合计算时对不规则复杂分界面无需进行光滑处理。对超声速圆柱绕流和钝锥体流场进行了模拟,数值结果表明:该方法对不规则分界面和复杂外形具有高度适用性,通过与重叠网格结果进行比较验证了该方法的有效性和计算效率,相较于传统的DSMC方法,计算效率分别提高了2.3倍和3.16倍,具有高效性。展开更多
针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向...针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向复杂外形高度的贴体性、优良适应性以及工程领域对过渡流区高效通用型计算方法的需求,提出并实现了一套三维复杂界面四面体非结构网格N-S/DSMC耦合方法用于模拟高超声速过渡流。该方法使用局部克努森数作为连续失效参数划分连续/稀薄区域,并生成三维复杂N-S/DSMC耦合界面,沿分界面两侧分别推进一层或多层界面信息传递单元,基于边界状态法进行信息耦合。该耦合方法无需对复杂不规则分界面作光滑和修型处理,具备对复杂过渡流区工程问题数值模拟的通用性。分别对三维高超声速圆球和钝锥绕流进行模拟,数值结果显示:与参考文献中的DSMC方法相比,激波处数值和壁面特征值基本一致,最大误差不超过8%,但计算效率分别提高了1.74倍和2.28倍,验证了该耦合方法的正确性和高效性。展开更多
在采用计算流体力学−离散元耦合方法(computational fluid dynamics-discrete element method,CFD-DEM)进行固液两相耦合分析时,颗粒计算时间步的选取直接影响到耦合计算精度和计算效率.为此,本文选取每个目标颗粒为研究对象,引入插值...在采用计算流体力学−离散元耦合方法(computational fluid dynamics-discrete element method,CFD-DEM)进行固液两相耦合分析时,颗粒计算时间步的选取直接影响到耦合计算精度和计算效率.为此,本文选取每个目标颗粒为研究对象,引入插值函数计算时间步的运动位移,构建可变空间搜索网格;通过筛选可能碰撞颗粒建立搜索列表,采用逆向搜索方式判断碰撞颗粒,从而提出一种改进的DEM方法(modified discrete element method,MDEM).该算法在颗粒群与流体耦合计算中,颗粒计算初始时间步选取不受颗粒碰撞时间限制,通过自动调整和修正实现大步长,由颗粒和流体耦合条件实时更新流体计算时间步,使颗粒计算时间步选取过小导致计算效率低、选取过大导致颗粒碰撞漏判的问题得以解决,为颗粒与流体耦合的数值模拟提供了行之有效的计算方法.通过两个颗粒和多个颗粒的数值模拟,得到的颗粒间碰撞力、碰撞位置及次数,与理论计算结果的相对误差均低于2%,与传统的DEM碰撞搜索算法相比,在选取的3种计算时间步均不会影响计算精度,且有较高的计算效率.通过多个颗粒与流体的耦合数值模拟,采用传统的CFD-DEM方法,只有颗粒计算时间步选取10^(−6)s或更小才能得到精确解,而采用本文方法取10^(−4)s也能够得到精确解,避免了颗粒碰撞随时间步增大而出现的漏判问题,且计算耗时降低了16.7%.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U2141254 and U23B6009)。
文摘In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability.
文摘For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.
文摘对于高超声速飞行器在临近空间形成的连续与稀薄混合流场,DSMC(direct simulation of Monte Carlo)方法需要消耗巨大的计算资源,CFD(computational fluid dynamics)方法,无法对稀薄效应进行准确模拟。在对连续/稀薄耦合数值方法深入研究的基础上,提出了一套非结构网格的CFD/DSMC耦合方法。该方法具有通用强、适应性良好的特点,进行耦合计算时对不规则复杂分界面无需进行光滑处理。对超声速圆柱绕流和钝锥体流场进行了模拟,数值结果表明:该方法对不规则分界面和复杂外形具有高度适用性,通过与重叠网格结果进行比较验证了该方法的有效性和计算效率,相较于传统的DSMC方法,计算效率分别提高了2.3倍和3.16倍,具有高效性。
文摘针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向复杂外形高度的贴体性、优良适应性以及工程领域对过渡流区高效通用型计算方法的需求,提出并实现了一套三维复杂界面四面体非结构网格N-S/DSMC耦合方法用于模拟高超声速过渡流。该方法使用局部克努森数作为连续失效参数划分连续/稀薄区域,并生成三维复杂N-S/DSMC耦合界面,沿分界面两侧分别推进一层或多层界面信息传递单元,基于边界状态法进行信息耦合。该耦合方法无需对复杂不规则分界面作光滑和修型处理,具备对复杂过渡流区工程问题数值模拟的通用性。分别对三维高超声速圆球和钝锥绕流进行模拟,数值结果显示:与参考文献中的DSMC方法相比,激波处数值和壁面特征值基本一致,最大误差不超过8%,但计算效率分别提高了1.74倍和2.28倍,验证了该耦合方法的正确性和高效性。
文摘在采用计算流体力学−离散元耦合方法(computational fluid dynamics-discrete element method,CFD-DEM)进行固液两相耦合分析时,颗粒计算时间步的选取直接影响到耦合计算精度和计算效率.为此,本文选取每个目标颗粒为研究对象,引入插值函数计算时间步的运动位移,构建可变空间搜索网格;通过筛选可能碰撞颗粒建立搜索列表,采用逆向搜索方式判断碰撞颗粒,从而提出一种改进的DEM方法(modified discrete element method,MDEM).该算法在颗粒群与流体耦合计算中,颗粒计算初始时间步选取不受颗粒碰撞时间限制,通过自动调整和修正实现大步长,由颗粒和流体耦合条件实时更新流体计算时间步,使颗粒计算时间步选取过小导致计算效率低、选取过大导致颗粒碰撞漏判的问题得以解决,为颗粒与流体耦合的数值模拟提供了行之有效的计算方法.通过两个颗粒和多个颗粒的数值模拟,得到的颗粒间碰撞力、碰撞位置及次数,与理论计算结果的相对误差均低于2%,与传统的DEM碰撞搜索算法相比,在选取的3种计算时间步均不会影响计算精度,且有较高的计算效率.通过多个颗粒与流体的耦合数值模拟,采用传统的CFD-DEM方法,只有颗粒计算时间步选取10^(−6)s或更小才能得到精确解,而采用本文方法取10^(−4)s也能够得到精确解,避免了颗粒碰撞随时间步增大而出现的漏判问题,且计算耗时降低了16.7%.