期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations 被引量:1
1
作者 Lei Huang Lin Qi +2 位作者 Hongna Wang Jinli Zhang Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1101-1108,共8页
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod... Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter. 展开更多
关键词 Supercritical water Shell and tube heat exchanger Particle conveying Pneumatic transport cfd simulations CFX
在线阅读 下载PDF
CFD simulations of quenching process for partial oxidation of methane:Comparison of jet-in-cross-flow and impinging flow configurations
2
作者 Xinyu Yu Tianwen Chen +1 位作者 Qi Zhang Tiefeng Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期903-913,共11页
A new quenching process using the cold pyrolysis gas has been proposed for the partial oxidation(POX) of methane to recover the heat. The mixing of hot product gas and cold pyrolysis gas in milliseconds is critical to... A new quenching process using the cold pyrolysis gas has been proposed for the partial oxidation(POX) of methane to recover the heat. The mixing of hot product gas and cold pyrolysis gas in milliseconds is critical to this new approach. Two most widely-used rapid mixing configurations, i.e. the jet-in-cross-flow(JICF) and impinging flow configurations, are compared in terms of mixing and quenching performances using computational fluid dynamics(CFD) coupled with detailed reaction mechanism Leeds 1.5. The mixedness, residence time distribution, temperature decreasing rate and loss ratio of acetylene during the quenching are systematically studied. The results show that the impinging flow has a more uniform mixing and narrower residence time distribution than the JICF.However, the temperature decreasing rate of the mainstream is faster in the JICF than in the impinging flow. The loss ratio of acetylene in the quenching process is 2.89% for the JICF and 1.45% for the impinging flow, showing that the impinging flow configuration is better and feasible for the quenching of POX of methane. 展开更多
关键词 Jet-in-cross-flow Impinging flow cfd simulations Mixing behavior Quenching of partial oxidation process
在线阅读 下载PDF
Performance of vortex pump in CFD simulations with rough walls
3
作者 Wenguang Li 《International Journal of Fluid Engineering》 2025年第1期81-93,共13页
Flow passages in vortex pumps usually have rough walls.Precise consideration of wall roughness is an important issue in pump flow simulations.Numerical studies of the effects of wall roughness on the performance of vo... Flow passages in vortex pumps usually have rough walls.Precise consideration of wall roughness is an important issue in pump flow simulations.Numerical studies of the effects of wall roughness on the performance of vortex pumps are quite rare,especially with different interface models.Turbulent flows of water in a vortex pump with a specific speed of 76 are simulated using 1/8 and whole impeller fluid domains with rough walls,using the three-dimensional Reynolds-averaged Navier-Stokes equations,the standard k-εmodel,and a scalable wall function in Ansys CFX 2019 R2.Equivalent sand grain roughnesses k_(s)=0.586 and 9.38μm are determined for the chamber casing,volute,and suction pipe,and k_(s)=18.47 and 36.94μm for the impeller by using the arithmetic average roughness Ra of the materials used in the pump and the correlation between k_(s)and Ra given in the literature.The mixing loss along the interface between impeller and volute in the transient rotor model is determined.The rates of change of the head,shaft-power,and efficiency of the pump due to wall roughness are calculated.The transient rotor model with whole impeller domain and the frozen rotor model with 1/8 impeller domain for rough walls with Ra=0.1μm in the suction pipe,volute,and chamber and 3.2μm in the impeller give the most accurate predictions of pump performance compared with experimental data.The transient rotor model with whole impeller domain gives more accurate predictions of pump performance than the frozen rotor model with 1/8 impeller domain.The mixing loss rises quickly at high flow rates.The transient rotor model with whole impeller domain gives plausible predictions of the rates of change. 展开更多
关键词 wall roughness mixing loss PERFORMANCE vortex pumps vortex pump interface modelsturbulent cfd simulations
在线阅读 下载PDF
A three-dimensional CFD numerical simulation study on pressurized oxy-fuel gasification of poultry manure in an industrial-scale gasifier
4
作者 Qinwen Liu Guoqing Lian +4 位作者 Wenli Dong Yu Su Wei Quan Leong Chi-Hwa Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 2025年第5期115-127,共13页
As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pr... As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology. 展开更多
关键词 Oxy-fuel gasification Pressurized gasification Poultry manure Carbon negative cfd numerical simulation
在线阅读 下载PDF
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
5
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction Computational fluid dynamics(cfd simulations
在线阅读 下载PDF
Advancement in CFD and Responsive AI to Examine Cardiovascular Pulsatile Flow in Arteries:A Review
6
作者 Priyambada Praharaj Chandrakant R.Sonawane Arunkumar Bongale 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2021-2064,共44页
This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics(CFD)in biomedical applications.Beyond its various engineering applications,CFD has started... This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics(CFD)in biomedical applications.Beyond its various engineering applications,CFD has started to establish a presence in the biomedical field.Cardiac abnormality,a familiar health issue,is an essential point of investigation by research analysts.Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood.The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities.Numerous studies have explored the rheological behavior of blood experimentally and numerically.This paper provides insight into how researchers have incorporated the pulsatile nature of the blood experimentally,numerically,or through various simulations over the years.It focuses on how machine learning platforms derive outputs based on mass and momentum conservation to predict the velocity and pressure profile,analyzing various cardiac diseases for clinical applications.This will pave the way toward responsive AI in cardiac healthcare,improving productivity and quality in the healthcare industry.The paper shows how CFD is a vital tool for efficiently studying the flow in arteries.The review indicates this biomedical simulation and its applications in healthcare using machine learning and AI.Developing AI-based CFD models can impact society and foster the advancement towards responsive AI. 展开更多
关键词 Pulsatile flow CARDIOVASCULAR cfd simulation PATIENT-SPECIFIC GPU-accelerated responsive AI
暂未订购
Relevant Fluid Dynamics Aspects of the Internal Ballistics in a Small-Scale Hybrid Thruster
7
作者 Sergio Cassese Riccardo Guida +2 位作者 Daniele Trincone Stefano Mungiguerra Raffaele Savino 《Fluid Dynamics & Materials Processing》 2025年第6期1299-1337,共39页
Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse an... Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs.This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster:an uneven regression rate during High-Density Polyethylene(HDPE)and Acrylonitrile Butadiene Styrene(ABS)fuel tests,and non-negligible axial consumption in the ABS test case.The present study seeks to identify their fluid-dynamic origins by analysing key aspects of the thruster’s internal ballistics.The impact of recirculation zones and mixing on regression rates is quantified,as is the effect of grain heating on performance.Although already known in the present scientific literature,these phenomena prove to become particularly relevant for small-scale engines.Furthermore,the study demonstrates how appropriate numerical tools can replicate experimental findings,helping to foresee and mitigate undesirable behaviours in the design phases of future HRE propulsion systems.CFD results match the final HDPE grain geometry,reproducing the uneven port diameters with a maximum error below 9%.For ABS,axial regression is accurately captured,confirming the model’s reliability.Furthermore,average regression rates differ by only 1.60%and 1.20%for HDPE and ABS,respectively,while mass consumption is reproduced within 1.70%for HDPE and 3.01%for ABS.Overall,the results of the work demonstrate the reliability of the numerical approach adopted.This enriches the analysis capabilities devoted to 10 N-class engines,provides an additional tool for simulating the internal ballistics of small-scale hybrid thrusters,and integrates the existing literature with new insights into their fluid dynamics. 展开更多
关键词 Computational Fluid Dynamics Transient cfd simulations Hybrid Thrusters Hydrogen Peroxide CubeSats
在线阅读 下载PDF
CFD-supported optimization of flow distribution in quench tank for heat treatment of A357 alloy large complicated components 被引量:2
8
作者 杨夏炜 朱景川 李文亚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3399-3409,共11页
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f... The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components. 展开更多
关键词 A357 alloy flow distribution quench tank computational fluid dynamics(cfd simulation
在线阅读 下载PDF
CFD analysis of a CiADS fuel assembly during the steam generator tube rupture accident based on the LBEsteamEulerFoam 被引量:4
9
作者 Yun-Xiang Li Lu Meng +8 位作者 Song Li Zi-Nan Huang Di-Si Wang Bo Liu You-Peng Zhang Tian-Ji Peng Lu Zhang Xing-Kang Su Wei Jiang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期136-147,共12页
Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor... Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly. 展开更多
关键词 Steam generator tube rupture CiADS cfd simulations Two-phase flow
在线阅读 下载PDF
Basic theory of dust explosion of energetic materials: A review
10
作者 Mengli Yin Chunyan Wang +4 位作者 Haoyang Guo Yuhuai Shi Shengnan Shi Wenhui Wang Xiong Cao 《Defence Technology(防务技术)》 2025年第6期48-66,共19页
Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the... Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the high energy density of energetic materials, dust explosion can cause serious production safety accidents. Therefore, it is necessary to understand the dust explosion characteristics of energetic materials and the mechanism of dust explosion. According to the literature review, among various influencing factors, the physical and chemical properties of dust are the decisive factors affecting the explosion characteristics of dust. In addition to experimental studies, numerical simulation is another important tool. However, it is subjected to certain limitations. Moreover, it is essential but challenging to fully understand the underlying mechanism. In addition, given the safety hazards posed by dust explosion, explosion suppression has attracted extensive attention for research. Depending on the medium used, there are different forms of suppression, including powder explosion suppression, water spray explosion suppression, inert gas explosion suppression, porous material explosion suppression, and vacuum chamber explosion suppression. As for the selection of explosion suppression agent, consideration must be given to the characteristics of the material. Furthermore, the above research has laid a foundation for discussing the future progress in studying dust explosion of energetic materials, with nano dust and the constraints of existing technology as the focal point. 展开更多
关键词 Energetic dust explosion Influencing factors cfd simulation Explosion mechanism Explosion suppression Nano dust
在线阅读 下载PDF
Hydrodynamic Performance of Two Types of Floating Breakwaters Integrated With a Wave Energy Converter
11
作者 Qiaoling Ji Guoqiang Chen +1 位作者 Yan Xu Sheng Dong 《哈尔滨工程大学学报(英文版)》 2025年第1期176-193,共18页
Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed... Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed.In this research,the hydrodynamic performance,including capture width ratio(CWR),wave transmission coefficient,heave motion,and force coefficient,were studied and compared between the two types.A numerical simulation model based on the Navier-Stokes equation was employed.The effects of power take-off(PTO)damping coefficient,wave periods,and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated.The results reveal that the L type performs better in shorter wave periods,and the trapezoidal type exhibits a higher CWR in intermediate wave periods.This study offers knowledge of the design and protection of the two WEC-FB types. 展开更多
关键词 Floating breakwater Wave energy converter Hydrodynamic performance Capture width ratio Transmission coefficient cfd simulation
在线阅读 下载PDF
Influence of Six Degrees of Freedom Motion on the Cavitation Characteristics of a Floating Horizontal-Axis Tidal Current Turbine
12
作者 JIANG Jin ZHAO Mu-yu ZHENG Xiong-bo 《China Ocean Engineering》 2025年第2期303-315,共13页
A floating horizontal-axis tidal current turbine(HATT)is an underwater power generation device where cavitation inevitably occurs on blade surfaces,severely affecting a turbine’s lifespan.Under wave action,these floa... A floating horizontal-axis tidal current turbine(HATT)is an underwater power generation device where cavitation inevitably occurs on blade surfaces,severely affecting a turbine’s lifespan.Under wave action,these floating turbines exhibit six degrees of freedom motion,potentially intensifying the cavitation on the blade surfaces.This study selects three types of oscillatory motions from the six degrees of freedom:roll,yaw,and pitch.Computational fluid dynamics(CFD)methods are used for numerical calculations,and transient simulations of multiphase flow are conducted on the basis of the Reynolds-Averaged Navier-Stokes(RANS)model.Research has revealed strong correlations between flow velocity,the blade tip speed ratio,and cavitation.During oscillatory motion,the motion period and amplitude also significantly impact cavitation.In roll motion,the cavitation rate can increase by up to 59%with decreasing period,whereas in pitch and yaw motions,the increases are 7.57 times and 36%larger,respectively.With an increase in amplitude during roll motion,the cavitation rate can increase by up to 1.08 times,whereas in pitch and yaw motions,the increases are 3.49 times and 45%,respectively.The cavitation rate on the blade surfaces is the highest in pitch motion,followed by roll and yaw motions. 展开更多
关键词 horizontal-axis turbine tidal current energy six degrees of freedom motion cavitation effect multiphase flow cfd simulation
在线阅读 下载PDF
Flow field characteristics in high-speed train cabin:Negative effect of non-vertical air supply
13
作者 WU Song-bo LI Tian ZHANG Ji-ye 《Journal of Central South University》 2025年第8期3173-3186,共14页
Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environmen... Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains. 展开更多
关键词 high-speed trains non-vertical air supply ventilation cfd simulation
在线阅读 下载PDF
Impact of Rural Courtyard Layout Factors on its Wind Environment Comfort: A Case Study of Beixindian Village
14
作者 MA Yiqun LAN Lan 《Journal of Landscape Research》 2025年第3期6-13,18,共9页
The wind environment serves as an important indicator of the comfort level of the human settlement environment.A favorable wind environment in courtyards can offer residents a better living and activity environment.Ba... The wind environment serves as an important indicator of the comfort level of the human settlement environment.A favorable wind environment in courtyards can offer residents a better living and activity environment.Based on the Climatic Suitability Evaluating on Human Settlement,this study employs Computational Fluid Dynamics(CFD)simulation analysis to evaluate the wind environment comfort in rural courtyards,and elucidates the interactions between various factors influencing the courtyard wind environment and the courtyard wind environment.It is anticipated that the findings of this study will serve as a valuable reference for the renovation and new construction of rural houses,with a focus on optimizing the wind environment. 展开更多
关键词 Rural courtyard Wind environment cfd simulation Working condition
在线阅读 下载PDF
A novel self-rotating down-the-hole hammer with impact and rotary functions for directional drilling:Design,modeling,and experiments
15
作者 Jin-E Cao Hong-Yu Cao +2 位作者 Hong-Yun Zhang Jin-He Bai Pin-Lu Cao 《Petroleum Science》 2025年第1期413-429,共17页
Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directi... Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directional drilling have rarely been reported, and a model for evaluating their output performance is absent. This study proposes a novel structure of self-rotating pneumatic hammer(NSH)with a built-in rotational mechanism, which converts partial impact energy of the piston to rotate the drill bit and, consequently, enables dual functions of impact and rotate drill bit. The energy is converted via a screw key-groove mechanism, and the wedge-shaped teeth mechanism ensures that the drill bit rotates clockwise during the piston moves downward. The computational fluid dynamics method is applied to simulate the dynamic response of airflow and piston during the operation of Φ127NSH.Meanwhile, a test bench is established to record data concerning chamber pressure and piston displacement, as well as recording its operational status and rock fragmentation during drilling into granite. The results showed that the maximum error between simulated and experimental data is 8.2%.The Φ127NSH successfully achieves dual impact and rotary drilling functions, and granite smoothly feeds and forms a continuous shear rock zone. In addition, the effects of torque load, engagement distance in rotation sleeves, and well deviation angle towards the performance of NSH were studied in detail. The designed Φ127NSH operates at an impact velocity of 3.98 m/s, impact frequency of 12.55 Hz, and rotational speed of 29.51 r/min under a mass-flow rate of 0.18 kg/s, torque load of 400 N·m, engagement distance of 40 mm, and well deviation angle of 0°. The torque load adversely affects the NSH output performance. Increasing the engagement distance improves impact performance while reducing rotational performance. The performance variation of the NSH is minimal when drilling directional wells with varying deviation angles. 展开更多
关键词 Self-rotating pneumatic hammer Directional drilling Fluent cfd simulation Experimental verification
原文传递
CFD simulation of bubbling and collapsing characteristics in a gas-solid fluidized bed 被引量:8
16
作者 Pei Pei Zhang Kai +1 位作者 Lu Erwei Wen Dongsheng 《Petroleum Science》 SCIE CAS CSCD 2009年第1期69-75,共7页
Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and sol... Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard. 展开更多
关键词 Fluidized bed cfd simulation bubbling and collapsing behaviors
原文传递
CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea 被引量:6
17
作者 JIANG Tao ZHANG Yingzhao +6 位作者 TANG Sulin ZHANG Daojun ZUO Qianmei LIN Weiren WANG Yahui SUN Hui WANG Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第12期127-137,共11页
Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's... Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas. 展开更多
关键词 turbidity current cfd simulation 3D seismic interpretation sedimentary process
在线阅读 下载PDF
CFD simulation of pressure fluctuation characteristics in the gas-solid fluidized bed:Comparisons with experiments 被引量:3
18
作者 Wang Qingcheng Zhang Kai Gu Hongyan 《Petroleum Science》 SCIE CAS CSCD 2011年第2期211-218,共8页
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua... A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface. 展开更多
关键词 Gas-solid fluidized bed cfd simulation experimental measurements propagation ofpressure fluctuations pressure wave velocity pressure fluctuation frequency
原文传递
CFD Based Study of Heterogeneous Microclimate in a Typical Chinese Greenhouse in Central China 被引量:3
19
作者 WANG Xiao-wei LUO Jin-yao LI Xiao-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期914-923,共10页
Indoor microclimate is important for crop production and quality in greenhouse cultivation. This paper focuses on microclimate study based on a computational fluid dynamics (CFD) model of a typical plastic greenhou... Indoor microclimate is important for crop production and quality in greenhouse cultivation. This paper focuses on microclimate study based on a computational fluid dynamics (CFD) model of a typical plastic greenhouse (with a sector shape vertical cross-section) popularly used in central China. A radiation model is added into the CFD model so as to simulate coupling of convective transfers and radiative exchanges at the cover and the roof, instead of using the usual coupling approach based on energy balance. In addition, a fractal permeability model is innovatively adopted in the modeling of the crop canopy. Compared the numerical results with measured experimental data, the model simulation is proved with success. This model then is used to explore the microclimate variable distributions in the greenhouse. It shows that the airflow pattern, temperature and humidity profiles are different from those in a sawtooth Mediterranean- type greenhouse. The study suggests that this deliberately developed CFD model can be served as a useful tool in macroclimate research and greenhouse design investigating. 展开更多
关键词 plastic greenhouse cfd simulation MICROCLIMATE fi'actal coupled model
在线阅读 下载PDF
CFD gas–liquid simulation of oriented valve tray 被引量:3
20
作者 马玉凤 纪利俊 +4 位作者 张杰旭 陈葵 武斌 吴艳阳 朱家文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1603-1609,共7页
Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of orien... Computational fluid dynamics(CFD) has recently emerged as an effective tool for the investigation of the hydraulic parameters and efficiency of tray towers.The computation domain was established for two types of oriented valves within a tray and meshed into two parts with different grid types and sizes.The volume fraction correlation concerning inter-phase momentum transfer source was fitted based on experimental data,and built in UDF for simulation.The flow pattern of oriented valve tray under different operating conditions was simulated under Eulerian-Eulerian framework with realizable k-ε model.The predicted liquid height from CFD simulation was in good agreement with the results of pressure drop and volume fraction correlations.Meanwhile,the velocity distribution and volume fraction of the two phases were demonstrated and analyzed,which are useful in design and analysis of the column trays. 展开更多
关键词 cfd simulation Oriented valve tray Gas–liquid flow Volume fraction correlation
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部