气流床气化过程产生的煤气化细渣(gasification fine slag,GFS)含碳量较高,已有的资源化利用均包含脱碳处理过程,而循环流化床(circulating fluidized bed,CFB)燃烧技术具有良好的燃料适应性,但业内普遍认为在煤气化细渣(以下简称气化细...气流床气化过程产生的煤气化细渣(gasification fine slag,GFS)含碳量较高,已有的资源化利用均包含脱碳处理过程,而循环流化床(circulating fluidized bed,CFB)燃烧技术具有良好的燃料适应性,但业内普遍认为在煤气化细渣(以下简称气化细渣)形成的过程中,残碳被包裹在熔融玻璃体内,因而在CFB燃烧温度(约900℃)下,很难燃尽。为了探寻CFB锅炉高效燃尽气流床气化细渣的可行性,先后研究了细渣中碳与灰的赋存形态、碳反应活性及其在流化床条件下的燃烧特性。扫描电镜分析结果及细渣破碎前后烧失试验对比结果,揭示了多孔残碳颗粒同灰颗粒分离的微观形貌,且研磨前后细渣失重之差仅为2.86%,进而明确了气化细渣中的残碳主要存在于熔融无机物之外,即“灰炭分离”赋存形态;热重分析(thermogravimetric analysis,TGA)及马弗炉中的燃尽试验证明了在CFB中温燃烧条件下可以实现气化细渣的燃尽。由于气化细渣属于Geldart分类法中的A类粒子,采用传统CFB的常用流化风速无法为其提供足够的系统停留时间,故无法实现细粒度气化细渣在CFB炉中的高效燃烧。根据快速流态化图谱,提出了纯燃气化细渣的低气速细粒子快速流态化(low velocity fine particle fast fluidization,LFFF)‒CFB燃烧技术,选择远低于常规流化风速、稍大于转变速度Utr的流化速度,可显著提高气化细渣在系统内的停留时间;利用一维CFB燃烧模型,对气化细渣在低流化气速下的流动特性及CFB锅炉温度分布进行预测分析。最后,提出了纯燃气化细渣的LFFF燃烧技术,设计了年处理24万t气流床气化细渣的75 t/h CFB锅炉方案。展开更多
BACKGROUND Cholangiocarcinoma(CCA),also known as bile duct cancer,is a devastating malignancy primarily affecting the biliary tract.AIM To assess their performance in clinical diagnosis and monitoring of CCA,plasma me...BACKGROUND Cholangiocarcinoma(CCA),also known as bile duct cancer,is a devastating malignancy primarily affecting the biliary tract.AIM To assess their performance in clinical diagnosis and monitoring of CCA,plasma methylation and circulating tumor cells were detected.METHODS Plasma samples were collected from Hubei Cancer Hospital(n=156).Plasma DNA was tested to detect SHOX2,HOXA9,SEPTIN9,and RASSF1A methylation using TaqMan PCR.Circulating tumor cells(CTCs)were detected in the peripheral blood of patients using the United States Food and Drug Administration-approved cell search system before and after clinical therapy.The CCA diagnostic value was estimated using the area under the curve.The independent prognosis risk factors for patients with CCA were estimated using Cox and logistic regression analyses.RESULTS The sensitivity and specificity of the four DNA plasma methylations exhibited 64.74%sensitivity and 93.88%specificity for detecting CCA.The receiver operating characteristic curve of the combined value for CCA diagnosis in plasma was 0.828±0.032.RASSF1A plasma methylation was related to the prognosis of patients with CCA.We determined the prognostic hazard ratio for CCA using CTC count,tumor stage,methylation,and carbohydrate antigen 19-9 levels as key factors.Our overall survival nomogram achieved a C-index of 0.705(0.605-0.805).CONCLUSION SHOX2,HOXA9,SEPTIN9,and RASSF1A plasma methylation demonstrated increased sensitivity for diagnosing CCA.RASSF1A plasma methylation and CTCs were valuable predictors to assess CCA prognosis and recurrence.展开更多
Given the growing burden of colorectal cancer(CRC)as a global health challenge,it becomes imperative to focus on strategies that can mitigate its impact.Posttreatment surveillance has emerged as essential for early de...Given the growing burden of colorectal cancer(CRC)as a global health challenge,it becomes imperative to focus on strategies that can mitigate its impact.Posttreatment surveillance has emerged as essential for early detection of recurrence,significantly improving patient outcomes.However,intensive surveillance strategies have shown mixed results compared to less intensive methods,emphasizing the necessity for personalized,risk-adapted approaches.The observed suboptimal adherence to existing surveillance protocols underscores the urgent need for more tailored and efficient strategies.In this context,circulating tumor DNA(ctDNA)emerges as a promising biomarker with significant potential to revolutionize post-treatment surveillance,demonstrating high specificity[0.95,95%confidence interval(CI):0.91-0.97]and robust diagnostic odds(37.6,95%CI:20.8-68.0)for recurrence detection.Furthermore,artificial intelligence and machine learning models integrating patient-specific and tumor features can enhance risk stratification and optimize surveillance strategies.The reported area under the receiver operating characteristic curve,measuring artificial intelligence model performance in predicting CRC recurrence,ranged from 0.581 and 0.593 at the lowest to 0.979 and 0.978 at the highest in training and validation cohorts,respectively.Despite this promise,addressing cost,accessibility,and extensive validation remains crucial for equitable integration into clinical practice.展开更多
文摘气流床气化过程产生的煤气化细渣(gasification fine slag,GFS)含碳量较高,已有的资源化利用均包含脱碳处理过程,而循环流化床(circulating fluidized bed,CFB)燃烧技术具有良好的燃料适应性,但业内普遍认为在煤气化细渣(以下简称气化细渣)形成的过程中,残碳被包裹在熔融玻璃体内,因而在CFB燃烧温度(约900℃)下,很难燃尽。为了探寻CFB锅炉高效燃尽气流床气化细渣的可行性,先后研究了细渣中碳与灰的赋存形态、碳反应活性及其在流化床条件下的燃烧特性。扫描电镜分析结果及细渣破碎前后烧失试验对比结果,揭示了多孔残碳颗粒同灰颗粒分离的微观形貌,且研磨前后细渣失重之差仅为2.86%,进而明确了气化细渣中的残碳主要存在于熔融无机物之外,即“灰炭分离”赋存形态;热重分析(thermogravimetric analysis,TGA)及马弗炉中的燃尽试验证明了在CFB中温燃烧条件下可以实现气化细渣的燃尽。由于气化细渣属于Geldart分类法中的A类粒子,采用传统CFB的常用流化风速无法为其提供足够的系统停留时间,故无法实现细粒度气化细渣在CFB炉中的高效燃烧。根据快速流态化图谱,提出了纯燃气化细渣的低气速细粒子快速流态化(low velocity fine particle fast fluidization,LFFF)‒CFB燃烧技术,选择远低于常规流化风速、稍大于转变速度Utr的流化速度,可显著提高气化细渣在系统内的停留时间;利用一维CFB燃烧模型,对气化细渣在低流化气速下的流动特性及CFB锅炉温度分布进行预测分析。最后,提出了纯燃气化细渣的LFFF燃烧技术,设计了年处理24万t气流床气化细渣的75 t/h CFB锅炉方案。
基金Supported by the Medical Talents of Wuhan Health and Family Planning Commission,No.2017[51](to Yu J)the Medical Talents of Wuhan Hospital of Traditional Chinese and Western Medicine(to Yu J)+1 种基金the Hubei Natural Science Foundation,No.2023AFB1091Wuhan Medical Research Project,No.WX23A36(to Yu J).
文摘BACKGROUND Cholangiocarcinoma(CCA),also known as bile duct cancer,is a devastating malignancy primarily affecting the biliary tract.AIM To assess their performance in clinical diagnosis and monitoring of CCA,plasma methylation and circulating tumor cells were detected.METHODS Plasma samples were collected from Hubei Cancer Hospital(n=156).Plasma DNA was tested to detect SHOX2,HOXA9,SEPTIN9,and RASSF1A methylation using TaqMan PCR.Circulating tumor cells(CTCs)were detected in the peripheral blood of patients using the United States Food and Drug Administration-approved cell search system before and after clinical therapy.The CCA diagnostic value was estimated using the area under the curve.The independent prognosis risk factors for patients with CCA were estimated using Cox and logistic regression analyses.RESULTS The sensitivity and specificity of the four DNA plasma methylations exhibited 64.74%sensitivity and 93.88%specificity for detecting CCA.The receiver operating characteristic curve of the combined value for CCA diagnosis in plasma was 0.828±0.032.RASSF1A plasma methylation was related to the prognosis of patients with CCA.We determined the prognostic hazard ratio for CCA using CTC count,tumor stage,methylation,and carbohydrate antigen 19-9 levels as key factors.Our overall survival nomogram achieved a C-index of 0.705(0.605-0.805).CONCLUSION SHOX2,HOXA9,SEPTIN9,and RASSF1A plasma methylation demonstrated increased sensitivity for diagnosing CCA.RASSF1A plasma methylation and CTCs were valuable predictors to assess CCA prognosis and recurrence.
文摘Given the growing burden of colorectal cancer(CRC)as a global health challenge,it becomes imperative to focus on strategies that can mitigate its impact.Posttreatment surveillance has emerged as essential for early detection of recurrence,significantly improving patient outcomes.However,intensive surveillance strategies have shown mixed results compared to less intensive methods,emphasizing the necessity for personalized,risk-adapted approaches.The observed suboptimal adherence to existing surveillance protocols underscores the urgent need for more tailored and efficient strategies.In this context,circulating tumor DNA(ctDNA)emerges as a promising biomarker with significant potential to revolutionize post-treatment surveillance,demonstrating high specificity[0.95,95%confidence interval(CI):0.91-0.97]and robust diagnostic odds(37.6,95%CI:20.8-68.0)for recurrence detection.Furthermore,artificial intelligence and machine learning models integrating patient-specific and tumor features can enhance risk stratification and optimize surveillance strategies.The reported area under the receiver operating characteristic curve,measuring artificial intelligence model performance in predicting CRC recurrence,ranged from 0.581 and 0.593 at the lowest to 0.979 and 0.978 at the highest in training and validation cohorts,respectively.Despite this promise,addressing cost,accessibility,and extensive validation remains crucial for equitable integration into clinical practice.