Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite an...Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite and 3D printing have promising applications in aerospace,automobile,rail transit,etc.In this paper,a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite.In the FDM 3D printing equipment,a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve the quality of 3D printing.The porosity of the 3D printed samples produced from the composite prepreg filament was analyzed under different printing parameters,and the mechanical properties and fracture mechanism of the printed parts were studied.The results show that the printing layer thickness,printing speed,printing temperature and build plate temperature have varying effects on the porosity of printed parts,which in turn affects tensile strength and the interlaminar shear strength(ILSS).When the printing layer thickness is 0.4 mm,printing speed is 2 mm/s,nozzle temperature is 430℃ and build plate temperature is 150℃,the tensile strength and ILSS of the composite printed parts reach their maximum values of 463.76 and 24.95 MPa,respectively.Microscopic analysis of the fracture morphology of the tensile specimens reveals that the 3D printed CGF/PEEK composite sample has three types of fracture mode,which are single filament bundle fracture,fracture mode of delamination,and fracture failure of the sample at the cross-section.The essence of the above three kinds of fracture mode is the difference of the interface bonding force of 3D printed CGF/PEEK composites.The fracture failure at the cross-section is that the continuous glass fibers in the composite are pulled out until they break,which is the main form of the failure of the composite under tensile load.The interfacial region of the composite is prone to microscopic defects such as voids and delamination during 3D printing,which become the most vulnerable link of the composite.Understanding the relationship between voids and fracture behavior lays a foundation for defect suppression and performance improvement of subsequent printed parts.展开更多
In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influen...In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influence on the quality of the formed components.A threedimensional heat transfer finite element model of Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)heated by Slit Structure Nozzle Hot Gas Torch(SSNHGT)assisted AFP is proposed.The influence of gas flow rate,heat transfer distance,and laying speed on heating temperature is analysed.The results show that the overall temperature increases and then decreases as the gas flow rate increases.With the increase in heat transfer distance and laying speed,the overall temperature decreases.Meanwhile,the gas flow rate has the greatest influence on the temperature of CF/PEEK being heated,followed by the laying speed and finally the heat transfer distance.Furthermore,the model can also be extended to other fiber-reinforced polymer composites formed by hot gas torch assisted AFP,which can guide the optimization of process parameters for subsequent heating temperature control.展开更多
Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerosp...Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.展开更多
Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistanc...Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.展开更多
In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic inte...In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.展开更多
The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the...The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.展开更多
Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and ...Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and mechanical adaptability.However,the effect of nSN on LPBF processability and scaffold properties remains unclear.This study systematically investigates the processability and mechanical per-formance of PEEK/nSN composites to enable reliable clinical fabrication.The results show that adding nSN improves powder flowability and inhibits crystallization,enhancing LPBF processability.The introduction of nSN reduces PEEK’s non-isothermal crystallization Avrami exponent from 3.04 to 2.01,suggesting a transformation from a three-dimensional spherulitic to a two-dimensional lamellar crystal structure.Tensile tests reveal that the presence of nSN alters the optimal process parameters,reducing the optimal laser power from 25 W to 22 W due to increased energy absorption efficiency,as shown by an increase in absorbance at 843 cm^(-1)from 0.27 to 0.35 as the nSN content increases to 2 wt%.Porous diamond-structured scaffolds were fabricated using optimal parameters for pure PEEK,PEEK/1 wt%nSN,and PEEK/2 wt%nSN.Diamond-structured scaffolds fabricated with 1 wt%nSN showed a 12.2%increase in elastic modulus compared to pure PEEK,highlighting the enhanced mechanical performance.Over-all,this study offers key insights into the stable and customizable LPBF fabrication of PEEK/nSN porous scaffolds,providing a foundation for future research on their bioactivity and antibacterial properties for orthopedic applications.展开更多
A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is...A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is expected to suppress the thermal deformation of shafts.A laser-assisted in-situ consolidation(LAC)process,together with its equipment,was developed to manufacture the hybrid shaft.Firstly,the optimal process parameters,including the laser-heated temperature and placement speed,were investigated.A maximum short-beam shear strength of 80.7 MPa was achieved when the laser-heated temperature was 500°C and the placement speed was 100 mm/s.In addition,the failure modes and the effect of environmental temperature on the CF/PEEK samples were analyzed.Both interlayer cracks and inelastic deformation failure modes were observed.The formation and propagation of cracks were further investigated through digital image correlation(DIC).Furthermore,internal defects of the CF/PEEK sample were detected using X-ray tomography scans,and a minimum porosity of 0.23%was achieved with the optimal process parameters.Finally,two steel–CF/PEEK hybrid shafts,with different fibre orientations,were manufactured based on the optimal process parameters.The surface temperature distributions and thermal deformations were investigated using a self-established deformation/temperature measurement platform.The hybrid shaft showed an 85.7%reduction in radial displacement with hoop fibre orientation and an 11.5%reduction in axial displacement with cross fibre orientation compared with the steel shaft.The results indicate that the proposed method has great potential to improve the thermal stability of hybrid shafts and the accuracy of machine tools.展开更多
To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducte...To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.展开更多
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
基金supported by the National Key Research and Development Program Project of China(Grant No.2018YFB1106700).
文摘Polyether ether ketone(PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength,electrical insulation,and heat insulation.Parts manufactured using this composite and 3D printing have promising applications in aerospace,automobile,rail transit,etc.In this paper,a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite.In the FDM 3D printing equipment,a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve the quality of 3D printing.The porosity of the 3D printed samples produced from the composite prepreg filament was analyzed under different printing parameters,and the mechanical properties and fracture mechanism of the printed parts were studied.The results show that the printing layer thickness,printing speed,printing temperature and build plate temperature have varying effects on the porosity of printed parts,which in turn affects tensile strength and the interlaminar shear strength(ILSS).When the printing layer thickness is 0.4 mm,printing speed is 2 mm/s,nozzle temperature is 430℃ and build plate temperature is 150℃,the tensile strength and ILSS of the composite printed parts reach their maximum values of 463.76 and 24.95 MPa,respectively.Microscopic analysis of the fracture morphology of the tensile specimens reveals that the 3D printed CGF/PEEK composite sample has three types of fracture mode,which are single filament bundle fracture,fracture mode of delamination,and fracture failure of the sample at the cross-section.The essence of the above three kinds of fracture mode is the difference of the interface bonding force of 3D printed CGF/PEEK composites.The fracture failure at the cross-section is that the continuous glass fibers in the composite are pulled out until they break,which is the main form of the failure of the composite under tensile load.The interfacial region of the composite is prone to microscopic defects such as voids and delamination during 3D printing,which become the most vulnerable link of the composite.Understanding the relationship between voids and fracture behavior lays a foundation for defect suppression and performance improvement of subsequent printed parts.
基金co-supported by the National Natural Science Foundation of China(No.52205460)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2023E041)the China Scholarship Council(CSC)to study abroad at the Nanyang Technological University.
文摘In-situ consolidation forming of high-performance thermoplastic composites by Automated Fiber Placement(AFP)is of significant interest in aerospace.During the laying process,the heating temperature has a great influence on the quality of the formed components.A threedimensional heat transfer finite element model of Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)heated by Slit Structure Nozzle Hot Gas Torch(SSNHGT)assisted AFP is proposed.The influence of gas flow rate,heat transfer distance,and laying speed on heating temperature is analysed.The results show that the overall temperature increases and then decreases as the gas flow rate increases.With the increase in heat transfer distance and laying speed,the overall temperature decreases.Meanwhile,the gas flow rate has the greatest influence on the temperature of CF/PEEK being heated,followed by the laying speed and finally the heat transfer distance.Furthermore,the model can also be extended to other fiber-reinforced polymer composites formed by hot gas torch assisted AFP,which can guide the optimization of process parameters for subsequent heating temperature control.
基金supported by The National Key Research and Development Program of China(No.2019YFB1901001).
文摘Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.
基金supported by the National Key R&D Program of China(No.2022YFC2401903)the“Pioneer”and the“Leading Goose”R&D Program of Zhejiang Province(No.2023C01170)+1 种基金the National Natural Science Foundation of China(No.52205424)the Key Project of Science and Technology Innovation 2025 of Ningbo(No.2023Z029),China.
文摘Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.
基金supported by the Shanghai Science and Tech-nology Committee(No.22511102400)Prof.Zhang would like to appreciate the financial support from the Fundamental Research Funds for the Central Universities(No.2232020G-12)+1 种基金the Fund of National Engineering Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-2376)the Textile Vi-sion Basic Research Program(No.J202105).
文摘In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.
基金support of the National Natural Science Foundation of China(61971301)In part by the Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant YDZJSX2021A018+1 种基金Shanxi Province Higher Education Science and Technology Innovation Plan Project(2022L060)the Fundamental Research Program of Shanxi Province(Nos.202203021212227,202303021212082).
文摘The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.
基金supported by the National Natural Science Foundation of China(Nos.52235008 and U2341270)the National Natural Science Foundation of China(No.52105341)。
文摘Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and mechanical adaptability.However,the effect of nSN on LPBF processability and scaffold properties remains unclear.This study systematically investigates the processability and mechanical per-formance of PEEK/nSN composites to enable reliable clinical fabrication.The results show that adding nSN improves powder flowability and inhibits crystallization,enhancing LPBF processability.The introduction of nSN reduces PEEK’s non-isothermal crystallization Avrami exponent from 3.04 to 2.01,suggesting a transformation from a three-dimensional spherulitic to a two-dimensional lamellar crystal structure.Tensile tests reveal that the presence of nSN alters the optimal process parameters,reducing the optimal laser power from 25 W to 22 W due to increased energy absorption efficiency,as shown by an increase in absorbance at 843 cm^(-1)from 0.27 to 0.35 as the nSN content increases to 2 wt%.Porous diamond-structured scaffolds were fabricated using optimal parameters for pure PEEK,PEEK/1 wt%nSN,and PEEK/2 wt%nSN.Diamond-structured scaffolds fabricated with 1 wt%nSN showed a 12.2%increase in elastic modulus compared to pure PEEK,highlighting the enhanced mechanical performance.Over-all,this study offers key insights into the stable and customizable LPBF fabrication of PEEK/nSN porous scaffolds,providing a foundation for future research on their bioactivity and antibacterial properties for orthopedic applications.
基金supported by the National Nature Science Foundation of China(No.52175440)the Aeronautics Science Foundation of China(No.2023Z049076001)+3 种基金the Science and Technology Innovation Fund of Shanghai Aerospace(No.SAST2022-058)the Open Fund of State Key Laboratory of Mechanical Transmissions(No.SKLMT-MSKFKT-202202)the Key R&D Program of Zhejiang Province(No.2023C01058)the Experimental Technique Project of Zhejiang University(No.SYBJS202302),China.
文摘A novel steel–carbon fibre/polyetheretherketone(CF/PEEK)hybrid shaft is proposed,considering the thermal stability,negative coefficient of thermal expansion in fibre orientation,and high stiffness of CF/PEEK,which is expected to suppress the thermal deformation of shafts.A laser-assisted in-situ consolidation(LAC)process,together with its equipment,was developed to manufacture the hybrid shaft.Firstly,the optimal process parameters,including the laser-heated temperature and placement speed,were investigated.A maximum short-beam shear strength of 80.7 MPa was achieved when the laser-heated temperature was 500°C and the placement speed was 100 mm/s.In addition,the failure modes and the effect of environmental temperature on the CF/PEEK samples were analyzed.Both interlayer cracks and inelastic deformation failure modes were observed.The formation and propagation of cracks were further investigated through digital image correlation(DIC).Furthermore,internal defects of the CF/PEEK sample were detected using X-ray tomography scans,and a minimum porosity of 0.23%was achieved with the optimal process parameters.Finally,two steel–CF/PEEK hybrid shafts,with different fibre orientations,were manufactured based on the optimal process parameters.The surface temperature distributions and thermal deformations were investigated using a self-established deformation/temperature measurement platform.The hybrid shaft showed an 85.7%reduction in radial displacement with hoop fibre orientation and an 11.5%reduction in axial displacement with cross fibre orientation compared with the steel shaft.The results indicate that the proposed method has great potential to improve the thermal stability of hybrid shafts and the accuracy of machine tools.
基金Funded by the National Natural Science Foundation of China(No.51271036)
文摘To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.