A series of high-entropy ceramics with the nominal composition(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)(0≤x≤0.4)has been successfully synthesized using the conventional solid-phase method.T...A series of high-entropy ceramics with the nominal composition(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)(0≤x≤0.4)has been successfully synthesized using the conventional solid-phase method.The(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics are confirmed to be composed of the main phase(Zn,Mg,Li)TiO_(3)and the secondary phase Ca_(0.5)Sr_(0.5)TiO_(3)by X-ray diffractometer,Rietveld refinement,and X-ray spectroscopy analysis.The quality factor(Q×f)of the samples is inversely proportional to the content of the Ca_(0.5)Sr_(0.5)TiO_(3)phase,and it is influenced by the density.The secondary phase and molecular polarizability(α_(T))have a significant impact on the dielectric constant(ε_(r))of the samples.Moreover,the temperature coefficient of resonant frequency(τ_(f))of the samples is determined by the distortion of[TiO_(6)]octahedra and the secondary phase.The results indicate tha(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics achieve ideal microwave dielectric properties(ε_(r)=17.6,Q×f=40900 GHz,τ_(f)=-8.6 ppm/℃)when x=0.35.(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics possess the potential for application in wireless communication,and a new approach has been provided to enhance the perform-ance of microwave dielectric ceramics.展开更多
Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we repo...Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.展开更多
Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,...Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials.展开更多
With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences too...With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.展开更多
Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machinin...Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machining of zirconia ceramic material remains a significant challenge at present.In this study,experiments on peck drilling of 0.2 mm and 0.5 mm micro-holes in zirconia ceramics using diamond-coated drills are conducted.The characteristics of the force signal during the drilling process,the influence of drilling parameters on the drlling force and the chipping size at the hole exit,and features of the tool wear stages of the diamond coated drill are analyzed.Experimental results suggest that when machining micro-holes in zirconia ceramics,there is a positive correlation between the axial force and the size of the chipping at the exit.The axial force increases with the increase of the feed rate and the step distance,and it shows a trend of first increasing and next decreasing with the increase of the spindle speed.The wear of the drll bit has a significant impact on the quality of the hole exit.It is found that with the continuous drilling of seven holes,the axial force increases by 144.2%,and the size of edge chipping at the exit increases from about 20μm to more than 130μm.This study can provide some valuable references for improving the micro-hole processing quality of material.展开更多
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama...Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.展开更多
In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)w...In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)were synthesized by a conventional solid-state reaction route,specific attentions was focused on the effects of CeO_(2)dopants on the structures and electrical properties of the 0.3PZN-0.7PZT ceramics,revealing the role conve rsion of CeO_(2)dopants with its doping amount(x).When less CeO_(2)(x≤0.2)is introduced into 0.3PZN-0.7PZT,the prepared ceramics are identified as the coexistence of rhombohedral and tetragonal phases,also involved with an increased grain size and a reduced atomic ratio of Pb/(Zr+Ti+Zn+Nb).The increased remanent polarization(Pr)and deceased coercive filed(Ec),as well as improved dielectric permittivity(er)and piezoelectric coefficient(d_(33))de monstrate the donor substitution of Ce^(3+)for Pb^(2+)at the A-site of perovskite lattice.Conversely,the introduction of excessive CeO_(2)(x>0.2)causes a reversal evolution in the electrical properties of ceramics,suggesting that some of the introduced cerium element tends to become Ce4+,which equivalently substitutes for Zr^(4+)at the B-site.Additionally,the diffused phase transition(DPT)behaviors of the 0.3PZN-0.7PZT-xCe ceramics were investigated by the modified Curie-Weiss Law.The sample with x=0.2 shows reduced DPT character and optimized electrical properties,including TC=297℃,εr=1400,d_(33)=480 pC/N,tanδ=1.6%,kp=65%,d_(33)·g_(33)=16.32×10^(-12)m^(2)/N,Pr=38.3μC/cm^(2)and Ec=1.02 kV/mm.These enhanced electrical properties not only are contributed by the donor substitution effect of Ce^(3+),but also benefit from the optimized morphotropic phase boundary that is close to the tetragonal-rich side.展开更多
Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates ...Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates precise and efficient grinding techniques to produce components with satisfactory functionality.However,the inherent high hardness and brittleness of SiC ceramics present significant challenges during grinding,leading to severe brittle fracture and tool wear that compromise both surface integrity and production efficiency.Although ductile-regime grinding of SiC ceramics can be achieved by enhancing machine tool accuracy and stiffness while optimizing wheel performance alongside appropriate selection of process parameters,a comprehensive summary of the mechanisms underlying damage evolution during grinding is lacking,and a mature grinding process for SiC ceramics has yet to be developed.To bridge this gap,the sintering technologies,mechanical properties,and microstructures of SiC ceramics were briefly covered.The grinding-induced damage mechanism and low-damage grinding technologies of SiC ceramics were summarized.The fundamental science underlying the ductile deformation and removal mechanisms of brittle solids was emphasized.Additionally,attention was directed towards the critical role of hybrid energy field grinding in minimizing brittle damages and promoting removal efficiency.This review not only elucidates the intrinsic interactions between the work material and abrasives,but also offers valuable insights for optimizing the grinding processes of brittle solids.展开更多
A series of single-phase high-entropy perovskite ceramics(HEPCs)(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3)(x=0.25,0.3,0.35 and 0.4)was synthesized using solid-state reactions.The effect of Yb on the str...A series of single-phase high-entropy perovskite ceramics(HEPCs)(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3)(x=0.25,0.3,0.35 and 0.4)was synthesized using solid-state reactions.The effect of Yb on the structure and magnetic properties was systematically investigated.The results show that all samples are in orthorhombic perovskite structures with a space group of Pbnm and exhibit a strong crystallization trend sintered at 1300℃for 16 h.All HEPCs have a smooth surface morphology with distinct grain boundaries and exhibit significant hysteresis effects at T=5 K.With the increase of Yb,high lattice distortion and weak double exchange lead to the decrease of T_(C).The presence of Jahn-Teller(JT)distortion and the enhancement of MnO_(6)octahedral distortion result in different magnetic interactions.Moreover,the sample has the best magnetic properties at x=0.35 among the four HEPCs,which is attributed to the large content of Mn^(3+),remnant ratio(Mr/Ms)and lattice distortion(σ^(2)).This work provides a valuable reference for regulating the magnetism of high-entropy ceramics based on rare-earth perovskite manganese oxides.展开更多
In order to utilize coal gangue and steel slag with high added value,foamed ceramics were prepared by using coal gangue as the main raw material,and steel slag as the auxiliary raw material,adding appropriate amount o...In order to utilize coal gangue and steel slag with high added value,foamed ceramics were prepared by using coal gangue as the main raw material,and steel slag as the auxiliary raw material,adding appropriate amount of flux(talc and potassium feldspar)and foaming agent silicon carbide(SiC).The effects of the steel slag addition(equivalent replacement of coal gangue,5%,10%,15%,20%,25%,30%,and 35%,by mass)and flux addition(fixing the total addition of talc and potassium feldspar at 20 mass%,replacing potassium feldspar with talc in equal amount of 0,5%,10%,15%,and 20%,by mass)on the physical properties,microstructure and phase composition of the foamed ceramics were studied.The results show that:(1)with the increase of steel slag additions,the addition of SiO_(2) in the skeleton structure decreases,the addition of CaO,MgO and other oxides increases,and the viscosity decreases;excessive steel slag addition is not conducive to the formation of moderate-size and uniform distributed pores due to the low addition of SiO_(2);the steel slag addition shall not exceed 30%;(2)the influence of talc and potassium feldspar flux on the foamed ceramics is mainly to change the contents of alkali metal oxides,as well as Al_(2)O_(3) and SiO_(2) which constitute the ceramic skeleton;(3)the optimum foamed ceramic formulation is m(coal gangue):m(steel slag):m(potassium feldspar):m(talc)=50:30:10:10,extra-adding 0.1 mass%SiC.展开更多
Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect ...Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.展开更多
We presented a novel porous alumina ceramics(PACs)with superoleophilicity and superoleo-phobicity when immersed in different oil-water environments.The wettability,separation efficiency,permeation flux and reusability...We presented a novel porous alumina ceramics(PACs)with superoleophilicity and superoleo-phobicity when immersed in different oil-water environments.The wettability,separation efficiency,permeation flux and reusability of the PACs for oil/water separation were investigated and characterized via extensive ex-periments.The PACs material had favourable properties including mechanical strength and chemical durability compared with fabric-based materials and organic sponge-based materials previously reported in literature for oil/water separation.It is believed that the PACs material and methodology presented in this work may provide wastewater remediation industry with a promising alternative for dealing with the catastrophic ocean oil pollu-tion and other oil contamination.展开更多
As one of the core visual symbols of Chinese traditional culture,the communication history of auspicious cloud patterns on Central Plains ancient ceramics has great significance.Its contemporary value can be summarize...As one of the core visual symbols of Chinese traditional culture,the communication history of auspicious cloud patterns on Central Plains ancient ceramics has great significance.Its contemporary value can be summarized into four aspects,namely the carrier of cultural inheritance and national identity,the innovative resources of modern design,the media of international cultural exchange and the enlightenment of ecological philosophy.展开更多
Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several chall...Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several challenges must be overcome before they can be widely used.This paper reviews in detail the tailoring of microstructure from the aspect of process parameters,the updated knowledge gained in microstructure(crystallographic orientation,high-resolution interfacial structures)and the latest means of optimizing eutectic microstructure(seed-induced method,introducing low-energy grain boundaries and high-entropy phase).Additionally,the paper explores future techniques for the fabrication of bulk ceramic materials and effective toughening approaches.This review highlights the achievements made especially in the last 15 years,current limitations in Al_(2)O_(3)-based eutectic ceramics,and offers comprehensive insights and strategic guidance for further mechanical breakthroughs.展开更多
The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by gra...The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by grain size refinement or/and doping small amounts of alumina.Fine-grained dense 3mol%yttria-doped tetragonal zirconia polycrystal(3Y-TZP)ceramics were prepared by pressureless sintering a zirconia powder doped with 0.25wt%alumina.The LTD behaviors of as-prepared 3Y-TZP ceramics were evaluated by accelerated aging at 134℃in water.The samples sintered at 1300℃for 2 h achieve the relative density higher than 99.9%with the average grain size of 147 nm.The 3Y-TZP ceramic exhibits excellent LTD resistance that no t→m transformation takes place after 125 h accelerated aging.Large amounts of defects were observed inside grains evidenced by the high-resolution transmission electron microscopic(HRTEM)analysis.It is proposed that the presence of defects enhances the sintering kinetics and favors the present low-temperature densification.Possible reasons for defects formation were discussed and the mechanical properties of the 3Y-TZP ceramic were reported as well.展开更多
Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance po...Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.展开更多
Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suita...Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.展开更多
ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(...ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.展开更多
High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)...High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
基金supported by the Sichuan Science and Technology Program,China(No.2023YFQ0082)the Guangdong Provincial Key Laboratory of Electronic Functional Materials and Device,China(No.EFMD2022005Z)the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,China(No.SKL-SPM-202021).
文摘A series of high-entropy ceramics with the nominal composition(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)(0≤x≤0.4)has been successfully synthesized using the conventional solid-phase method.The(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics are confirmed to be composed of the main phase(Zn,Mg,Li)TiO_(3)and the secondary phase Ca_(0.5)Sr_(0.5)TiO_(3)by X-ray diffractometer,Rietveld refinement,and X-ray spectroscopy analysis.The quality factor(Q×f)of the samples is inversely proportional to the content of the Ca_(0.5)Sr_(0.5)TiO_(3)phase,and it is influenced by the density.The secondary phase and molecular polarizability(α_(T))have a significant impact on the dielectric constant(ε_(r))of the samples.Moreover,the temperature coefficient of resonant frequency(τ_(f))of the samples is determined by the distortion of[TiO_(6)]octahedra and the secondary phase.The results indicate tha(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics achieve ideal microwave dielectric properties(ε_(r)=17.6,Q×f=40900 GHz,τ_(f)=-8.6 ppm/℃)when x=0.35.(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics possess the potential for application in wireless communication,and a new approach has been provided to enhance the perform-ance of microwave dielectric ceramics.
基金Project supported by the Key Research and Develop Projects in Gansu Province(Grant No.23YFGA0002)the project funding of Audiowell Electronics(Guangdong)Co.,Ltd.
文摘Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.
文摘Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials.
文摘With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.
基金supported by the National Natural Science Foundation of China(Nos.51805242,52475463).
文摘Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machining of zirconia ceramic material remains a significant challenge at present.In this study,experiments on peck drilling of 0.2 mm and 0.5 mm micro-holes in zirconia ceramics using diamond-coated drills are conducted.The characteristics of the force signal during the drilling process,the influence of drilling parameters on the drlling force and the chipping size at the hole exit,and features of the tool wear stages of the diamond coated drill are analyzed.Experimental results suggest that when machining micro-holes in zirconia ceramics,there is a positive correlation between the axial force and the size of the chipping at the exit.The axial force increases with the increase of the feed rate and the step distance,and it shows a trend of first increasing and next decreasing with the increase of the spindle speed.The wear of the drll bit has a significant impact on the quality of the hole exit.It is found that with the continuous drilling of seven holes,the axial force increases by 144.2%,and the size of edge chipping at the exit increases from about 20μm to more than 130μm.This study can provide some valuable references for improving the micro-hole processing quality of material.
基金supports from National Natural Science Foundation of China(Grant No.52105498)The science and technology innovation Program of Hunan Province(Grant No.2021RC3074)+2 种基金Advanced Laser Technology Laboratory of Anhui Province(AHL2022KF04)National Key R&D Program of China(Grant No.2023YFB14605500)Changsha Natural Science Foundation(kq2402089).
文摘Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.
基金Project supported by the Natural Science Foundation of Sichuan Province(2024NSFSC0219)。
文摘In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)were synthesized by a conventional solid-state reaction route,specific attentions was focused on the effects of CeO_(2)dopants on the structures and electrical properties of the 0.3PZN-0.7PZT ceramics,revealing the role conve rsion of CeO_(2)dopants with its doping amount(x).When less CeO_(2)(x≤0.2)is introduced into 0.3PZN-0.7PZT,the prepared ceramics are identified as the coexistence of rhombohedral and tetragonal phases,also involved with an increased grain size and a reduced atomic ratio of Pb/(Zr+Ti+Zn+Nb).The increased remanent polarization(Pr)and deceased coercive filed(Ec),as well as improved dielectric permittivity(er)and piezoelectric coefficient(d_(33))de monstrate the donor substitution of Ce^(3+)for Pb^(2+)at the A-site of perovskite lattice.Conversely,the introduction of excessive CeO_(2)(x>0.2)causes a reversal evolution in the electrical properties of ceramics,suggesting that some of the introduced cerium element tends to become Ce4+,which equivalently substitutes for Zr^(4+)at the B-site.Additionally,the diffused phase transition(DPT)behaviors of the 0.3PZN-0.7PZT-xCe ceramics were investigated by the modified Curie-Weiss Law.The sample with x=0.2 shows reduced DPT character and optimized electrical properties,including TC=297℃,εr=1400,d_(33)=480 pC/N,tanδ=1.6%,kp=65%,d_(33)·g_(33)=16.32×10^(-12)m^(2)/N,Pr=38.3μC/cm^(2)and Ec=1.02 kV/mm.These enhanced electrical properties not only are contributed by the donor substitution effect of Ce^(3+),but also benefit from the optimized morphotropic phase boundary that is close to the tetragonal-rich side.
基金supported by the National Natural Science Foundation of China(Grant Nos.52375420,52322510)Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2023E014)+6 种基金National Key Research and Development Program of China(Grant No.2021YFB3400403)Shenzhen Science and Technology Program(Grant No.GNCWSSJH20240032)Self-Planned Task(Grant No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT),China Postdoctoral Science Foundation(Grant No.2022T150163)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220463)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(Grant No.2022KM004)Open Foundation of Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material(Grant No.E22445)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024,FRFCU5710051122)。
文摘Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates precise and efficient grinding techniques to produce components with satisfactory functionality.However,the inherent high hardness and brittleness of SiC ceramics present significant challenges during grinding,leading to severe brittle fracture and tool wear that compromise both surface integrity and production efficiency.Although ductile-regime grinding of SiC ceramics can be achieved by enhancing machine tool accuracy and stiffness while optimizing wheel performance alongside appropriate selection of process parameters,a comprehensive summary of the mechanisms underlying damage evolution during grinding is lacking,and a mature grinding process for SiC ceramics has yet to be developed.To bridge this gap,the sintering technologies,mechanical properties,and microstructures of SiC ceramics were briefly covered.The grinding-induced damage mechanism and low-damage grinding technologies of SiC ceramics were summarized.The fundamental science underlying the ductile deformation and removal mechanisms of brittle solids was emphasized.Additionally,attention was directed towards the critical role of hybrid energy field grinding in minimizing brittle damages and promoting removal efficiency.This review not only elucidates the intrinsic interactions between the work material and abrasives,but also offers valuable insights for optimizing the grinding processes of brittle solids.
基金Project supported by the Guangxi Natural Science Foundation,China(2024GXNSFAA010415)the Opening Fund of the Key Laboratory of New Processing Technology for Nonferrous Metals&Materials of the Ministry of Education(22AA-9)。
文摘A series of single-phase high-entropy perovskite ceramics(HEPCs)(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3)(x=0.25,0.3,0.35 and 0.4)was synthesized using solid-state reactions.The effect of Yb on the structure and magnetic properties was systematically investigated.The results show that all samples are in orthorhombic perovskite structures with a space group of Pbnm and exhibit a strong crystallization trend sintered at 1300℃for 16 h.All HEPCs have a smooth surface morphology with distinct grain boundaries and exhibit significant hysteresis effects at T=5 K.With the increase of Yb,high lattice distortion and weak double exchange lead to the decrease of T_(C).The presence of Jahn-Teller(JT)distortion and the enhancement of MnO_(6)octahedral distortion result in different magnetic interactions.Moreover,the sample has the best magnetic properties at x=0.35 among the four HEPCs,which is attributed to the large content of Mn^(3+),remnant ratio(Mr/Ms)and lattice distortion(σ^(2)).This work provides a valuable reference for regulating the magnetism of high-entropy ceramics based on rare-earth perovskite manganese oxides.
文摘In order to utilize coal gangue and steel slag with high added value,foamed ceramics were prepared by using coal gangue as the main raw material,and steel slag as the auxiliary raw material,adding appropriate amount of flux(talc and potassium feldspar)and foaming agent silicon carbide(SiC).The effects of the steel slag addition(equivalent replacement of coal gangue,5%,10%,15%,20%,25%,30%,and 35%,by mass)and flux addition(fixing the total addition of talc and potassium feldspar at 20 mass%,replacing potassium feldspar with talc in equal amount of 0,5%,10%,15%,and 20%,by mass)on the physical properties,microstructure and phase composition of the foamed ceramics were studied.The results show that:(1)with the increase of steel slag additions,the addition of SiO_(2) in the skeleton structure decreases,the addition of CaO,MgO and other oxides increases,and the viscosity decreases;excessive steel slag addition is not conducive to the formation of moderate-size and uniform distributed pores due to the low addition of SiO_(2);the steel slag addition shall not exceed 30%;(2)the influence of talc and potassium feldspar flux on the foamed ceramics is mainly to change the contents of alkali metal oxides,as well as Al_(2)O_(3) and SiO_(2) which constitute the ceramic skeleton;(3)the optimum foamed ceramic formulation is m(coal gangue):m(steel slag):m(potassium feldspar):m(talc)=50:30:10:10,extra-adding 0.1 mass%SiC.
基金supported by the Xinjiang Tianchi Talent Introduction Plan (51052300585)the Fundamental Research Funds for Autonomous Region Universities (XJEDU2022P002)+1 种基金the Natural science foundation project of Xinjiang Uygur Autonomous Region (2023D01C192,2023D01C33)the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region (2023D14001)。
文摘Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.
基金Fund by the Science and Technology Programme Project of Bengbu City(No.2023gx01)the Key Technologies R&D Program of CNBM(No.2021HX0809)。
文摘We presented a novel porous alumina ceramics(PACs)with superoleophilicity and superoleo-phobicity when immersed in different oil-water environments.The wettability,separation efficiency,permeation flux and reusability of the PACs for oil/water separation were investigated and characterized via extensive ex-periments.The PACs material had favourable properties including mechanical strength and chemical durability compared with fabric-based materials and organic sponge-based materials previously reported in literature for oil/water separation.It is believed that the PACs material and methodology presented in this work may provide wastewater remediation industry with a promising alternative for dealing with the catastrophic ocean oil pollu-tion and other oil contamination.
基金Supported by Open Project of Henan Key Laboratory of Research for Central Plains Ancient Ceramics in 2018(ZYGTCXN2018-05).
文摘As one of the core visual symbols of Chinese traditional culture,the communication history of auspicious cloud patterns on Central Plains ancient ceramics has great significance.Its contemporary value can be summarized into four aspects,namely the carrier of cultural inheritance and national identity,the innovative resources of modern design,the media of international cultural exchange and the enlightenment of ecological philosophy.
基金financially supported by the National Natural Science Foundation of China(No.52171046)National Natural Science Foundation of China-key programme(No.52234010)the Fundamental Research Funds for the Central Universities and Shaanxi Provincial Key Science and Technology Innovation Team(No.2023-CX-TD-14).
文摘Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several challenges must be overcome before they can be widely used.This paper reviews in detail the tailoring of microstructure from the aspect of process parameters,the updated knowledge gained in microstructure(crystallographic orientation,high-resolution interfacial structures)and the latest means of optimizing eutectic microstructure(seed-induced method,introducing low-energy grain boundaries and high-entropy phase).Additionally,the paper explores future techniques for the fabrication of bulk ceramic materials and effective toughening approaches.This review highlights the achievements made especially in the last 15 years,current limitations in Al_(2)O_(3)-based eutectic ceramics,and offers comprehensive insights and strategic guidance for further mechanical breakthroughs.
基金financially supported by the Foundation of Hubei Province Key Laboratory of Green Materials for Light Industry,Hubei University of Technology。
文摘The occurrence of tetragonal to monoclinic phase(t→m)transformation in zirconia ceramics under humid ambient conditions induces the low-temperature degradation(LTD).Such t→m transformation could be suppressed by grain size refinement or/and doping small amounts of alumina.Fine-grained dense 3mol%yttria-doped tetragonal zirconia polycrystal(3Y-TZP)ceramics were prepared by pressureless sintering a zirconia powder doped with 0.25wt%alumina.The LTD behaviors of as-prepared 3Y-TZP ceramics were evaluated by accelerated aging at 134℃in water.The samples sintered at 1300℃for 2 h achieve the relative density higher than 99.9%with the average grain size of 147 nm.The 3Y-TZP ceramic exhibits excellent LTD resistance that no t→m transformation takes place after 125 h accelerated aging.Large amounts of defects were observed inside grains evidenced by the high-resolution transmission electron microscopic(HRTEM)analysis.It is proposed that the presence of defects enhances the sintering kinetics and favors the present low-temperature densification.Possible reasons for defects formation were discussed and the mechanical properties of the 3Y-TZP ceramic were reported as well.
文摘Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.
基金Student Training Program for Innovation and Entrepreneurship of Hangzhou Institute for Advanced Study,UCAS(CXCY20230305)Chinese Academy of Sciences Key Project(ZDRW-CN-2021-3-1-18)。
文摘Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.
基金National Natural Science Foundation of China (U24A2052)Shanghai Eastern Talent Plan。
文摘ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.
基金National Natural Science Foundation of China (51932010)。
文摘High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.