期刊文献+
共找到3,038篇文章
< 1 2 152 >
每页显示 20 50 100
Temperature-stabilized novel high-entropy microwave dielectric(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3) ceramics
1
作者 Xingyue Liao Yuanming Lai +7 位作者 Huan Huang Mingjun Xie Weiping Gong Yuanxun Li Qian Liu Chongsheng Wu Jiao Han Yiming Zeng 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1978-1986,共9页
A series of high-entropy ceramics with the nominal composition(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)(0≤x≤0.4)has been successfully synthesized using the conventional solid-phase method.T... A series of high-entropy ceramics with the nominal composition(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)(0≤x≤0.4)has been successfully synthesized using the conventional solid-phase method.The(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics are confirmed to be composed of the main phase(Zn,Mg,Li)TiO_(3)and the secondary phase Ca_(0.5)Sr_(0.5)TiO_(3)by X-ray diffractometer,Rietveld refinement,and X-ray spectroscopy analysis.The quality factor(Q×f)of the samples is inversely proportional to the content of the Ca_(0.5)Sr_(0.5)TiO_(3)phase,and it is influenced by the density.The secondary phase and molecular polarizability(α_(T))have a significant impact on the dielectric constant(ε_(r))of the samples.Moreover,the temperature coefficient of resonant frequency(τ_(f))of the samples is determined by the distortion of[TiO_(6)]octahedra and the secondary phase.The results indicate tha(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics achieve ideal microwave dielectric properties(ε_(r)=17.6,Q×f=40900 GHz,τ_(f)=-8.6 ppm/℃)when x=0.35.(Mg_(0.5)Zn_(0.5))_(0.4+x)Li_(0.4)(Ca_(0.5)Sr_(0.5))_(0.4−x)TiO_(3)ceramics possess the potential for application in wireless communication,and a new approach has been provided to enhance the perform-ance of microwave dielectric ceramics. 展开更多
关键词 high-entropy ceramics magnesium metatitanate-based ceramics microwave dielectric properties near-zero the temperature coefficient of resonant frequency value
在线阅读 下载PDF
Optical properties of transparent ceramics under shock compression:Correlation mechanism and design strategies
2
作者 Xiuxia Cao Yin Yu +4 位作者 Hongliang He Jianbo Hu Qiang Wu Wenjun Zhu Chuanmin Meng 《Matter and Radiation at Extremes》 2025年第6期9-30,共22页
Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties ... Over the past several decades,much research effort has been dedicated to the study of optical windows,with two primary themes emerging as key focuses.The first of these centers on investigating the optical properties of typical transparent single crystals under shock or ramp compression,which helps in the selection of appropriate optical windows for high-pressure experiments.The second involves the exploration of novel optical windows,particularly transparent polycrystalline ceramics,which not only match the shock impedance of the samples,but also preserve transparency under dynamic compression.In this study,we first integrate existing research on the evolution of optical properties in transparent single crystals and polycrystalline ceramics subjected to shock or ramp loading,proposing a mechanism that links mesoscopic damage to macroscopic optical transparency.Subsequently,through a systematic integration of experiments and computational analyses on polycrystalline transparent ceramics,we demonstrate that shock transparency can be enhanced by optimizing grain size and that shock impedance can be designed via compositional tuning.Notably,our results reveal that nano-grained MgAl_(2)O_(4) ceramics exhibit outstanding optical transparency under high shock pressures,highlighting a promising strategy for designing optical windows that retain transparency under extreme dynamic loading conditions. 展开更多
关键词 transparent ceramics optical properties exploration novel optical windowsparticularly transparent polycrystalline ceramicswhich macroscopic optical transparency investigating optical properties mesoscopic damage transparent single crystals
在线阅读 下载PDF
CW laser damage of ceramics induced by air filament 被引量:1
3
作者 Chuan Guo Kai Li +9 位作者 Zelin Liu Yuyang Chen Junyang Xu Zhou Li Wenda Cui Changqing Song Cong Wang Xianshi Jia Ji'an Duan Kai Han 《Opto-Electronic Advances》 2025年第7期23-35,共13页
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama... Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials. 展开更多
关键词 laser damage femtosecond laser CW laser combined pulse laser ceramics
在线阅读 下载PDF
High-performance KNN-based piezoelectric ceramics for buzzer application 被引量:1
4
作者 Cheng Xiong Bosen Li +2 位作者 Zhongxin Liao Yan Qiu Daqiang Gao 《Chinese Physics B》 2025年第4期591-596,共6页
Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we repo... Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics. 展开更多
关键词 lead-free piezoelectric ceramics phase structure engineering BUZZER ATOMIZER
原文传递
Thermal and mechanical properties of MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) medium-entropy ceramics 被引量:1
5
作者 Xunlei Chen Lin Chen +5 位作者 Jiang Tian Cheng Xu Jiaxin Liao Tianyu Li Jiankun Wang Jing Feng 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1441-1450,共10页
Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,... Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials. 展开更多
关键词 thermal barrier coatings rare-earth tantalates fracture toughness middle-entropy ceramics
在线阅读 下载PDF
Investigating the Potential of Dental Zirconia Ceramics in Accelerator Couplers
6
作者 WANG Lin SUN Liepeng +1 位作者 WU Zhengrong JIANG Guodong 《原子核物理评论》 北大核心 2025年第2期241-249,共9页
With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences too... With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators. 展开更多
关键词 dental zirconia ceramics coupler ceramic window dielectric constant tangent loss multi-physics field
原文传递
High-field ferroelectric dynamics and phase evolution in lithium-doped silver niobate ceramics
7
作者 Wenjing Shi Leiyang Zhang +6 位作者 Pingji Ge Ye Tian Ruiyi Jing Denis Alikin Vladimir Shur Xiaoqin Ke Li Jin 《Journal of Materials Science & Technology》 2025年第33期317-328,共12页
The structural phase transitions and ferroelectric dynamics of lead-free AgNbO_(3)have attracted consid-erable attention owing to their potential in energy-storage device applications.Here,we examine the impact of Li+... The structural phase transitions and ferroelectric dynamics of lead-free AgNbO_(3)have attracted consid-erable attention owing to their potential in energy-storage device applications.Here,we examine the impact of Li+doping on the phase transitions and polarization behavior of(Ag_(1-x)Li_(x))NbO_(3)(x=0-7%)ceramics through comprehensive dielectric and ferroelectric analyses.Rietveld refinement reveals a Li+-induced phase transition from Pbcm to R3c,with x=5%and x=6%compositions near the morphotropic phase boundary(MPB).Dielectric anomalies identify key characteristic temperatures,supporting the con-struction of a low-field phase diagram.High-field studies uncover a direct relationship between phase structure and polarization behavior,culminating in a high-field phase diagram.Near-MPB compositions exhibit distinct structural states,elucidating the mechanisms of reversible and irreversible phase transi-tions.This work provides a comprehensive explanation of the evolution of hysteresis loop profiles,capturing their progression from double hysteresis loops to square loops and their subsequent reversion to double loops under varying electric field and temperature conditions.These temperature-composition(T-x)and temperature-electric field(T-E)phase diagrams provide a robust framework for understanding phase evolution,offering critical insights into optimizing AgNbO_(3)-based ceramics for advanced functional applications. 展开更多
关键词 AgNbO_(3) LEAD-FREE Silver niobate ANTIFERROELECTRIC Phase translation ceramics
原文传递
Experimental Study on Peck Drilling of Micro-holes in Fully Sintered Zirconia Ceramics Using Diamond-Coated Drill Bits
8
作者 BIAN Rong ZHOU Junwei +3 位作者 DING Wenzheng KHAN Aqib Mashood XU Youfeng CHEN Ni 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期310-321,共12页
Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machinin... Zirconia(ZrO_(2))ceramic material has been widely applied to various fields due to its unique properties of high strength,high hardness,and excessive temperature resistance.However,the high-quality micro-hole machining of zirconia ceramic material remains a significant challenge at present.In this study,experiments on peck drilling of 0.2 mm and 0.5 mm micro-holes in zirconia ceramics using diamond-coated drills are conducted.The characteristics of the force signal during the drilling process,the influence of drilling parameters on the drlling force and the chipping size at the hole exit,and features of the tool wear stages of the diamond coated drill are analyzed.Experimental results suggest that when machining micro-holes in zirconia ceramics,there is a positive correlation between the axial force and the size of the chipping at the exit.The axial force increases with the increase of the feed rate and the step distance,and it shows a trend of first increasing and next decreasing with the increase of the spindle speed.The wear of the drll bit has a significant impact on the quality of the hole exit.It is found that with the continuous drilling of seven holes,the axial force increases by 144.2%,and the size of edge chipping at the exit increases from about 20μm to more than 130μm.This study can provide some valuable references for improving the micro-hole processing quality of material. 展开更多
关键词 zirconia ceramics diamond-coated peck drilling CHIPPING tool wear
在线阅读 下载PDF
Enhancing the mechanical properties and oxidation resistance of high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C_(0.95) ceramics through nitrogen doping
9
作者 Liansen Xia Peitao Hu +4 位作者 Shun Dong Jianqiang Xin Kaixuan Gui Xinghong Zhang Yanchun Zhou 《Journal of Materials Science & Technology》 2025年第32期12-27,共16页
High-entropy carbide ceramics(HECCs)exhibit superior properties compared to their constituent bi-nary compounds.However,high synthesis and sintering temperature are main obstacles that limit their widespread applicati... High-entropy carbide ceramics(HECCs)exhibit superior properties compared to their constituent bi-nary compounds.However,high synthesis and sintering temperature are main obstacles that limit their widespread applications.To address this issue,compositional and particle size controllable high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb02Ta_(0.2))C_(x) powders were successfully prepared by a sugar hydrogel combined with the carbothermal reduction method.Owing to the introduction of carbon vacancy,the temperature for the formation of single-phase solid solution of the high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C_(x) powders was decreased,and the addition of nitrogen decreased the densification temperature of the high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C_(0.95) ceramic by 200℃.In addition,the flexural strength and fracture toughness of the high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C_(0.95) ceramic were improved by 29%and 30%,respectively,compared with those without nitrogen doping.Atomic-resolution high angle annular dark field scanning transmission electron microscopy(HAADF-STEM)and energy dispersive spectroscopy(EDS)mapping re-veal that the segregation of N and small cation Ti as well as large lattice strains are responsible for the enhanced mechanical properties.Furthermore,with the introduction of nitrogen,the onset oxidation tem-perature(OOT)was increased,while the parabolic oxidation rate constant was decreased,revealing the beneficial effect of nitrogen doping on oxidation resistance.These results demonstrate that nitrogen dop-ing can not only improve the mechanical properties of HECCs but also enhance the oxidation resistance,which paves the way for the wide application of HECCs. 展开更多
关键词 High-entropy carbide ceramics Nitrogen doping Mechanical properties OXIDATION Grain boundary segregation Atomic resolution STEM
原文传递
Superior comprehensive electrical properties in the<001>textured Ba_(0.85)Ca_(0.15)Zr_(0.09)Ti_(0.91)O_(3)lead-free piezoelectric ceramics
10
作者 An Xue Sheng xian Luo +6 位作者 Fang fang Zeng Zhi yong Yang Yang Li Zhi yao Chu Xiao ning Tang Qi bin Liu Yun peng Qu 《Rare Metals》 2025年第10期7797-7808,共12页
Outstanding electric performance can be achieved in the textured ceramics.Therefore,the Ba_(0.85)Ca_(0.15)Zr_(0.09)Ti_(0.91)O_(3)(BCZT)lead-free piezoceramics with high texture degree(f)in<001>direction were suc... Outstanding electric performance can be achieved in the textured ceramics.Therefore,the Ba_(0.85)Ca_(0.15)Zr_(0.09)Ti_(0.91)O_(3)(BCZT)lead-free piezoceramics with high texture degree(f)in<001>direction were successfully prepared using template grain growth method.On account of the perfect sheet BaTiO3(BT)templates,a texture degree as high as 97.9%for BCZT-3.0 wt%BT ceramics was obtained.The ceramics system exhibited excellent comprehensive electrical properties(d_(33)~575 pCN^(-1),k_(p)~0.61,T_(C)~89℃ε_(r)(20℃)~3002,tanδ~4.18%,P_(r)~10.91μC cm^(-2),E_(C)~2.20 kV cm^(-1)).The superior performance originated from the coexistence of rhombohedralorthorhombic-tetragonal phases(R-O-T),as well as high textured degree.The multiphase coexistence was attributed to the composition design.This work provides a theoretical basis for designing lead-free piezoceramics with excellent properties in the future. 展开更多
关键词 BCZT LEAD-FREE BaTiO_(3)templates Textured ceramics Piezoelectric properties
原文传递
Doping effects and role conversion of CeO_(2)in 0.3PZN-0.7PZT ternary piezoelectric ceramics with enhanced electrical properties
11
作者 Yu Chen Lingfeng Li +3 位作者 Le Mi Xingyu Wang Zhijun Wang Qingyuan Wang 《Journal of Rare Earths》 2025年第5期1035-1045,共11页
In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)w... In this work,the rare-earth doped ternary lead zirconate titanate ceramics with chemical formula of[0.3 Pb(Zn_(1/3)Nb_(2/3))O_(3)-0.7Pb(Zr_(0.52)Ti_(0.48))O_(3)]+x wt%CeO_(2)(x=0-0.5,abbreviated as 0.3PZN-0.7PZT-xCe)were synthesized by a conventional solid-state reaction route,specific attentions was focused on the effects of CeO_(2)dopants on the structures and electrical properties of the 0.3PZN-0.7PZT ceramics,revealing the role conve rsion of CeO_(2)dopants with its doping amount(x).When less CeO_(2)(x≤0.2)is introduced into 0.3PZN-0.7PZT,the prepared ceramics are identified as the coexistence of rhombohedral and tetragonal phases,also involved with an increased grain size and a reduced atomic ratio of Pb/(Zr+Ti+Zn+Nb).The increased remanent polarization(Pr)and deceased coercive filed(Ec),as well as improved dielectric permittivity(er)and piezoelectric coefficient(d_(33))de monstrate the donor substitution of Ce^(3+)for Pb^(2+)at the A-site of perovskite lattice.Conversely,the introduction of excessive CeO_(2)(x>0.2)causes a reversal evolution in the electrical properties of ceramics,suggesting that some of the introduced cerium element tends to become Ce4+,which equivalently substitutes for Zr^(4+)at the B-site.Additionally,the diffused phase transition(DPT)behaviors of the 0.3PZN-0.7PZT-xCe ceramics were investigated by the modified Curie-Weiss Law.The sample with x=0.2 shows reduced DPT character and optimized electrical properties,including TC=297℃,εr=1400,d_(33)=480 pC/N,tanδ=1.6%,kp=65%,d_(33)·g_(33)=16.32×10^(-12)m^(2)/N,Pr=38.3μC/cm^(2)and Ec=1.02 kV/mm.These enhanced electrical properties not only are contributed by the donor substitution effect of Ce^(3+),but also benefit from the optimized morphotropic phase boundary that is close to the tetragonal-rich side. 展开更多
关键词 PZN-PZT Ternary piezoelectric ceramics CeO_(2) Donor substitution Morphotropic phase boundary Rare earths
原文传递
Additive manufacturing and performance study of hierarchically structured ceramics and monolithic catalysts
12
作者 Shuwang Wu Lei Tan +8 位作者 Xiaoyong Tian Cunbao Huo Zhiqiang Wu Zhun Hu Yang Yang Kunfeng Liu Xiaofei Liu Lihua Zhang Dichen Li 《Additive Manufacturing Frontiers》 2025年第4期29-47,共19页
In the background of carbon neutrality,monolithic ceramic catalysts are universally used in energy conversion and chemical catalysis due to the high heat and mass transfer efficiencies,low bed pressures,and scalabilit... In the background of carbon neutrality,monolithic ceramic catalysts are universally used in energy conversion and chemical catalysis due to the high heat and mass transfer efficiencies,low bed pressures,and scalability through modular design.However,traditional manufacturing processes are limited by mold dependence,organic solvent toxicity,and insufficient molding capability for complex structures,resulting in difficulty achieving precise regulation of cross-scale pores.Additive manufacturing(AM)technology employs a digital layered molding strategy to achieve the cross-scale structural regulation of catalysts from macroscopic flow channels to mesopores and micropores.This paper summarizes recent advances in the structural design of monolithic catalysts enabled by AM technologies and highlights their emerging applications in catalytic processes.Structurally,AM-fabricated monoliths have been effectively employed in key chemical reactions such as fuel reforming,CO_(2)conversion,biofuel synthesis.Strategies such as geometrical topology optimization,multi-scale pore synergy,biomimetic structural design,and functional gradient integration have been utilized to enhance heat and mass transport,reduce pressure drops,and improve overall catalytic performance.By overcoming the limitations of traditional catalysts,AM technologies create a new paradigm for addressing the longstanding challenge of coupling mass transfer with reaction kinetics.This approach provides a feasible pathway for driving both theoretical innovation and practical implementation of high-efficiency catalytic systems. 展开更多
关键词 Additive manufacturing Porous ceramics Monolithic catalyst Cross-scale structural design Hierarchical structures
在线阅读 下载PDF
Enhanced magnetic properties of novel non-equimolar(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3) high-entropy perovskite ceramics by Yb-doping
13
作者 Jiedong Qin Zhiqin Wen +5 位作者 Zhenyu Wu Bo Ma Li Tang Taoyi Lu Jinzhong Tian Yuhong Zhao 《Journal of Rare Earths》 2025年第7期1472-1481,共10页
A series of single-phase high-entropy perovskite ceramics(HEPCs)(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3)(x=0.25,0.3,0.35 and 0.4)was synthesized using solid-state reactions.The effect of Yb on the str... A series of single-phase high-entropy perovskite ceramics(HEPCs)(La_(0.25)Nd_(0.25)Sm_(0.25)Gd_(0.25))_(1-x)Yb_(x)MnO_(3)(x=0.25,0.3,0.35 and 0.4)was synthesized using solid-state reactions.The effect of Yb on the structure and magnetic properties was systematically investigated.The results show that all samples are in orthorhombic perovskite structures with a space group of Pbnm and exhibit a strong crystallization trend sintered at 1300℃for 16 h.All HEPCs have a smooth surface morphology with distinct grain boundaries and exhibit significant hysteresis effects at T=5 K.With the increase of Yb,high lattice distortion and weak double exchange lead to the decrease of T_(C).The presence of Jahn-Teller(JT)distortion and the enhancement of MnO_(6)octahedral distortion result in different magnetic interactions.Moreover,the sample has the best magnetic properties at x=0.35 among the four HEPCs,which is attributed to the large content of Mn^(3+),remnant ratio(Mr/Ms)and lattice distortion(σ^(2)).This work provides a valuable reference for regulating the magnetism of high-entropy ceramics based on rare-earth perovskite manganese oxides. 展开更多
关键词 High-entropy ceramics Rare earths Solid-state reaction method Perovskite structures Magnetic properties
原文传递
Damage evolution mechanism and low-damage grinding technology of silicon carbide ceramics
14
作者 Chen Li Kechong Wang +5 位作者 Oleg Zakharov Hailong Cui Mingtao Wu Tianchen Zhao Yongda Yan Yanquan Geng 《International Journal of Extreme Manufacturing》 2025年第2期551-586,共36页
Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates ... Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates precise and efficient grinding techniques to produce components with satisfactory functionality.However,the inherent high hardness and brittleness of SiC ceramics present significant challenges during grinding,leading to severe brittle fracture and tool wear that compromise both surface integrity and production efficiency.Although ductile-regime grinding of SiC ceramics can be achieved by enhancing machine tool accuracy and stiffness while optimizing wheel performance alongside appropriate selection of process parameters,a comprehensive summary of the mechanisms underlying damage evolution during grinding is lacking,and a mature grinding process for SiC ceramics has yet to be developed.To bridge this gap,the sintering technologies,mechanical properties,and microstructures of SiC ceramics were briefly covered.The grinding-induced damage mechanism and low-damage grinding technologies of SiC ceramics were summarized.The fundamental science underlying the ductile deformation and removal mechanisms of brittle solids was emphasized.Additionally,attention was directed towards the critical role of hybrid energy field grinding in minimizing brittle damages and promoting removal efficiency.This review not only elucidates the intrinsic interactions between the work material and abrasives,but also offers valuable insights for optimizing the grinding processes of brittle solids. 展开更多
关键词 GRINDING damage evolution low damage high surface integrity silicon carbide ceramics
在线阅读 下载PDF
Breaking new ground in colossal permittivity via chemical bonding engineering in high-entropy CaTiO_(3) ceramics
15
作者 Shujun Zhang 《Rare Metals》 2025年第8期5895-5897,共3页
Dielectric materials are essential in modern electronics,serving as the backbone of numerous components across a wide array of electronic devices[1,2].As technology advances,the demand for materials with high permitti... Dielectric materials are essential in modern electronics,serving as the backbone of numerous components across a wide array of electronic devices[1,2].As technology advances,the demand for materials with high permittivity,low dielectric loss,and thermal stability continues to rise.Traditional strategies to enhance permittivity often involve mechanisms such as phase transitions in ferroelectrics or interfacial polarization in boundary layer capacitor(IBLC)systems.However,each comes with trade-offs. 展开更多
关键词 high entropy catio ceramics electronic devices chemical bonding engineering colossal permittivity interfacial polarization phase transitions enhance permittivity dielectric materials
原文传递
Uncovering the hardening mechanism of multi-component carbide ceramics based on the coupling effect of covalent bond enhancement and lattice distortion
16
作者 Qingyi Kong Qinchen Liu +7 位作者 Lei Chen Sijia Huo Kunxuan Li Mingxuan Mao WeiWei Sun Yujin Wang Suk-Joong L.Kang Yu Zhou 《Journal of Materials Science & Technology》 2025年第31期102-112,共11页
The hardening mechanism of multi-component carbide ceramic has been investigated in detail through a combination of experiments,first-principles calculations,and ab initio molecular dynamics(AIMD).Eight dense carbide ... The hardening mechanism of multi-component carbide ceramic has been investigated in detail through a combination of experiments,first-principles calculations,and ab initio molecular dynamics(AIMD).Eight dense carbide ceramics were prepared by spark plasma sintering.Compulsorily,all the multi-component carbide samples have similar carbon content,grain size,and uniform compositional distribution by optimizing the sintering process and adjusting the initial raw materials.Hence the interference of other factors on the hardness of multi-component carbide ceramics is minimized.The effects of changes in the elemental species on the lattice distortion,bond strength,bonding properties,and electronic structure of multi-component carbide ceramics were thoroughly analyzed.These results show that the hardening of multi-component carbide ceramic can be attributed to the coupling of solid solution strengthening caused by lattice distortion and covalent bond strengthening.Besides,the“host lattice”of multi-component carbide ceramics is defined based on the concept of supporting lattice.The present work is of great significance for a deeper understanding of the hardening mechanism of multi-component carbide ceramics and the design of superhard multi-component carbides. 展开更多
关键词 Multi-component ceramics Mechanical properties Hardening mechanism First principle calculation Ab initio molecular dynamics
原文传递
Properties of Foamed Ceramics Prepared from Coal Gangue
17
作者 JI Ying WU Jiarui +1 位作者 LIU Baolin WANG Ruiqi 《China's Refractories》 2025年第3期10-16,共7页
In order to utilize coal gangue and steel slag with high added value,foamed ceramics were prepared by using coal gangue as the main raw material,and steel slag as the auxiliary raw material,adding appropriate amount o... In order to utilize coal gangue and steel slag with high added value,foamed ceramics were prepared by using coal gangue as the main raw material,and steel slag as the auxiliary raw material,adding appropriate amount of flux(talc and potassium feldspar)and foaming agent silicon carbide(SiC).The effects of the steel slag addition(equivalent replacement of coal gangue,5%,10%,15%,20%,25%,30%,and 35%,by mass)and flux addition(fixing the total addition of talc and potassium feldspar at 20 mass%,replacing potassium feldspar with talc in equal amount of 0,5%,10%,15%,and 20%,by mass)on the physical properties,microstructure and phase composition of the foamed ceramics were studied.The results show that:(1)with the increase of steel slag additions,the addition of SiO_(2) in the skeleton structure decreases,the addition of CaO,MgO and other oxides increases,and the viscosity decreases;excessive steel slag addition is not conducive to the formation of moderate-size and uniform distributed pores due to the low addition of SiO_(2);the steel slag addition shall not exceed 30%;(2)the influence of talc and potassium feldspar flux on the foamed ceramics is mainly to change the contents of alkali metal oxides,as well as Al_(2)O_(3) and SiO_(2) which constitute the ceramic skeleton;(3)the optimum foamed ceramic formulation is m(coal gangue):m(steel slag):m(potassium feldspar):m(talc)=50:30:10:10,extra-adding 0.1 mass%SiC. 展开更多
关键词 coal gangue steel slag foamed ceramics physical properties
在线阅读 下载PDF
BNT-based ceramics with large strain and low hysteresis over a wide temperature range
18
作者 Gensheng Dong Xiujuan Lin +5 位作者 Qi Li Yaoting Zhao Hang Luo Dou Zhang Changhong Yang Shifeng Huang 《Journal of Materials Science & Technology》 2025年第33期95-103,共9页
The incompatibility between large electro-strain and low-strain hysteresis,in addition to the poor tem-perature stability of piezoelectric ceramics,limits the development of high-precision piezoelectric actu-ators.In ... The incompatibility between large electro-strain and low-strain hysteresis,in addition to the poor tem-perature stability of piezoelectric ceramics,limits the development of high-precision piezoelectric actu-ators.In this work,Bi_(0.465)Na_(0.465)Ba_(0.07)Ti_(1−2 x)Ga_(x)Sb_(x)O_(3)(abbreviated as BNBT7-x GS,x=0,0.01,0.02,0.03,0.04,and 0.06)ceramics were designed.Specifically,when x=0.02,the ceramics exhibit a critical state in the relaxor ferroelectric system with a typical relaxor P−E loop and an I−E curve of four peaks.At this composition,the room temperature strain is 0.40%,which is capable of enhancing the electro-strain and reducing the hysteresis simultaneously.Furthermore,over the wide temperature range from 30 to 180℃,the minimum strain hysteresis(H_(ys))is 7.13%,and the maximum strain variation is only 16.8%,demonstrating ultra-high temperature stability.This work introduces a model for addressing the dilemma between good electro-strain properties and insufficient temperature stability in lead-free piezoelectric ceramics,crucial for the development of modern high-precision actuators. 展开更多
关键词 Lead-free ceramics Strain hysteresis Temperature stability Domain engineering
原文传递
Enhancing pyroelectric detection performance of Na_(0.5)Bi_(0.5)TiO_(3)-based lead-free ceramics via thermoelectric effect
19
作者 Liang-Wei Hu Wei Cao +6 位作者 Jun-Feng Jin Xiao-Long Sun Xiao-Lu Zhu Wen-Hao Xie Yue Hou Zi-Yu Wang Rui Xiong 《Rare Metals》 2025年第7期4947-4958,共12页
Pyroelectric sensors based on pyroelectric effect have a wide range of applications.However,the use of lead-containing materials limits their development.In this paper,Na_(0.5)Bi_(0.5)TiO_(3)-Na_(0.5)Bi_(4.5)TiO_(15)-... Pyroelectric sensors based on pyroelectric effect have a wide range of applications.However,the use of lead-containing materials limits their development.In this paper,Na_(0.5)Bi_(0.5)TiO_(3)-Na_(0.5)Bi_(4.5)TiO_(15)-Mn lead-free pyroelectric ceramics are used as sensitive materials to prepare pyroelectric sensors.Na_(0.5)Bi_(0.5)TiO_(3)-Na_(0.5)Bi_(4.5)TiO_(15)-Mn ceramics can achieve 7.58×10^(-4)C·m^(-2)·K^(-1)high-roomtemperature pyroelectric coefficient and depolarization temperature of 151℃.Due to the low dielectric constant and loss caused by Mn doping,the high detection rate value of 24.382μPa^(-1/2)is obtained.The voltage response rate and specific detection rate of the sensor prepared on this basis can attain the JC-T 2397-2017(ε_(r)>200,tanδ<5%,T_(c)>200,p>3.50×10^(-4)C·m^(-2)·K^(-1))application standard of pyroelectric infrared detectors.Thermoelectric cooler is proposed to adjust the temperature of the sensor,and its voltage response to human radiation is measured.Harnessing the superior pyroelectric attributes of advanced materials and connectable devices,the nascentthermoelectric-pyroelectric detection method is poised to be a subject of intensive investigation and development. 展开更多
关键词 Lead-free ceramics Pyroelectric sensors Thermoelectric cooler Thermoelectric-pyroelectric detection method
原文传递
Prominent cryogenic fluorescence temperature sensing and superior room-temperature photochromism in Bi/Eu codoped KNN transparent-ferroelectric ceramics
20
作者 Ping Zhou Qifa Lin +5 位作者 Xiangfu Zeng Min Gao Chunlin Zhao Cong Lin Tengfei Lin Xiao Wu 《Journal of Rare Earths》 2025年第11期2479-2488,I0006,共11页
The growing demand for the miniaturization and multifunctionality of optoelectronic devices has promoted the development of transparent ferroelectrics.However,it is difficult for the superior multiple optical properti... The growing demand for the miniaturization and multifunctionality of optoelectronic devices has promoted the development of transparent ferroelectrics.However,it is difficult for the superior multiple optical properties of these materials to be compatible with the excellent ferroelectricity and piezoelectricity in transparent ceramics.Here,we successfully synthesized Bi/Eu codoped eco-friendly K0.5Na0.5NbO3transparent-ferroelectric ceramics with photo luminescence(PL)behavior,photochromic(PC)reactions and temperature-responsive PL.Based on the distinct optical properties of ceramics at different temperature ranges(room temperature and ultralow temperature),high utilization of multiple optical functions was realized.At room temperature,the PC behavior induced PL modulation contrast reaches 75.2%(at 592 nm),which can be applied in the optical information storage field.In the ultralow temperature range,the ceramics exhibit excellent sensitivity(with a maximum relative sensitivity of26.32%/K)via fluorescence intensity ratio technology and exhibit great application potential in noncontact optical temperature measurements.Additionally,the change in the PL intensity at different wavelengths(I_(614)/I_(592))can serve as a reliable indicator for detecting the occurrence of the phase transition from rhombohedral to orthorhombic at low temperature.This work provides a feasible paradigm for realizing the integration of ferroelectricity and multifarious optical properties in a single optoelectronic material. 展开更多
关键词 K0.5NA0.5NBO3 Rare earths Transparent-ferroelectric ceramics FIR technology Optical temperature sensing Photochromic behavior
原文传递
上一页 1 2 152 下一页 到第
使用帮助 返回顶部