期刊文献+
共找到716篇文章
< 1 2 36 >
每页显示 20 50 100
Super-large-diameter shield tunnel undercrossing an intercity railway with oblique angle:Centrifuge test and numerical analysis
1
作者 Xing-Tao Lin Hui Zeng +2 位作者 Xuetao Wang Ming Song Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2741-2757,共17页
With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis o... With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis of the engineering background of the Lianghu Tunnel in Wuhan,the three-dimensional centrifuge test and numerical back analysis were used to study the development of subgrade surface settlement during shield tunneling.A three-dimensional numerical model with the same size as the prototype was subsequently established to further study the settlement development and torsion behavior of the subgrade during tunnel excavation.The results show that the maximum settlement point of the transverse settlement trough gradually moves to the tunnel axis during tunnel excavation and that the entire subgrade experiences torsional deformation.Moreover,the effect of the intersection angle between the axes of the tunnel and the subgrade on the surface settlement of the subgrade was further studied.The results show that the intersection angle has no effect on the maximum settlement,but the width of the settlement trough increases gradually with increasing angle.Finally,on the basis of the soil arching effect caused by tunnel excavation,the subgrade settlement during tunnel excavation is reduced by reinforcing the soil in different zones of soil arching.The results show that the settlement of the subgrade caused by the shield tunnel can be effectively controlled by adding reinforcement directly to the top of the tunnel,and the maximum settlement of the subgrade surface is reduced from 24.41 mm to 9.47 mm,a reduction of approximately 61.2%. 展开更多
关键词 Super-large-diameter shield Oblique undercrossing Intercity railway centrifuge test Numerical analysis
在线阅读 下载PDF
Centrifuge modeling of contaminant transport in keyed sand-bentonite cutoff walls
2
作者 Bo HUANG Linfeng CAO +2 位作者 Jiachen GUO Chunrui XU Yuchao LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第6期573-584,共12页
Sand-bentonite(SB)cutoff walls are commonly used as barriers in polluted areas.The embedded part of an SB wall in an aquitard is crucial for its performance.In this study,a centrifuge modeling test was carried out to ... Sand-bentonite(SB)cutoff walls are commonly used as barriers in polluted areas.The embedded part of an SB wall in an aquitard is crucial for its performance.In this study,a centrifuge modeling test was carried out to investigate the effect of contact between the key and the aquitard on the migration behavior of contaminants within an SB cutoff wall.The centrifuge was accelerated to 100g(gravitational acceleration)and maintained in-flight for 36 h,equivalent to 41 years of transport time in the prototype.Results showed that the contaminant concentration within the SB wall was higher downstream than in the middle in the thickness direction,and deeper regions exhibited a greater concentration than shallower ones.This concentration distribution indicated that contaminants were transported along the interface between the SB wall and the aquitard,bypassing the base of the SB wall to reach the downstream aquifer rapidly.An improved numerical simulation considering preferential interface migration was performed,which agreed with the centrifuge test results.The simulation results indicated that preferential interface migration,as a defect,significantly accelerated the speed of contaminant migration,reducing the breakthrough time of the SB wall to 1/9 of that without preferential interface migration. 展开更多
关键词 Cutoff wall centrifuge modeling Contaminant transport DEFECT Breakthrough time
原文传递
Effect of adjacent excavation on the mechanical response of proximal soil and tunnels in normally consolidated clay:centrifuge model testing and numerical simulation
3
作者 Ren-Peng CHEN Yong XU +1 位作者 Han-Lin WANG Fan-Yan MENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期931-949,共19页
Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to ... Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to these excavations is important for efficient and safe underground construction.However,previous investigations of this issue have predominantly made assumptions of plane-strain conditions and normal gravity states,and focused on the performance of tunnels affected by excavation and unloading in sandy strata.In this study,a 3D centrifuge model test is conducted to investigate the influence of excavation on an adjacent existing tunnel in normally consolidated clay.The testing results indicate that the excavation has a significant impact on the horizontal deformation of the retaining wall and tunnel.Moreover,the settlements of the ground surface and the tunnel are mainly affected by the long-term period after excavation.The excavation is found to induce ground movement towards the pit,resulting in prolonged fluctuations in pore water pressure and lateral earth pressure.The testing results are compared with numerical simulations,achieving consistency.A numerical parametric study on the tunnel location shows that when the tunnel is closer to the retaining wall,the decreases in lateral earth pressure and pore water pressure during excavation are more pronounced. 展开更多
关键词 centrifuge model Adjacent excavation TUNNEL Retaining wall Normally consolidated clay
原文传递
Centrifuge modelling of permeable pipe pile in consideration of pile driving process, soil consolidation, and axial loading
4
作者 Meijuan Xu Pengpeng Ni Guoxiong Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3861-3871,共11页
Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take... Precast driven piles are extensively used for infrastructure on soft soils,but the buildup of excess pore water pressure associated with pile driving is a challenging issue.The process of soil consolidation could take several months.Measures are sought to shorten the drainage path in the ground,and permeable pipe pile is a concept that involves drainage channels at the peak pore pressure locations around the pile circumference.Centrifuge tests were conducted to understand the responses of permeable pipe pile treated ground,experiencing the whole pile driving,soil consolidating,and axially loading process.Results show that the dissipation rate of pore pressures can be improved,especially at a greater depth or at a shorter distance from the pile,since the local hydraulic gradient was higher.Less significant buildup of pore pressures can be anticipated with the use of permeable pipe pile.For this,the bearing capacity of composite foundation with permeable pipe pile can be increased by over 36.9%,compared to the case with normal pipe pile at a specific time period.All these demonstrate the ability of permeable pipe pile in accelerating the consolidation process,mobilizing the bearing capacity of treated ground at an early stage,and minimizing the set-up effect. 展开更多
关键词 Permeable pipe pile centrifuge modelling Pore pressure buildup CONSOLIDATION Bearing capacity
在线阅读 下载PDF
Centrifuge modelling of dry granular run-out processes under deflective Coriolis condition
5
作者 Bei Zhang Yandong Bi Yu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1227-1239,共13页
Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective... Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible. 展开更多
关键词 centrifuge modelling Granular flow Run-out process Deflective coriolis condition Discrete element modelling
在线阅读 下载PDF
3D numerical simulation of a centrifuge test on a soil-nailed wall supporting an excavation under cyclic loading
6
作者 Javad Jalili Mohammad Moradi 《Earthquake Engineering and Engineering Vibration》 2025年第2期381-394,共14页
The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of supp... The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results. 展开更多
关键词 centrifuge test nailed wall numerical analysis excavation support
在线阅读 下载PDF
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling 被引量:3
7
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling centrifuge Anti-dip slope Failure mechanism Discrete element method
在线阅读 下载PDF
Numerical analysis on seismic performance of underground structures in liquefiable interlayer sites from centrifuge shaking table test 被引量:1
8
作者 Yan Guanyu Xu Chengshun +2 位作者 Zhang Zihong Du Xiuli Wang Xuelai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期781-798,共18页
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response... When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site. 展开更多
关键词 centrifuge shaking table test underground structure liquefiable interlayer sites seismic response validation of numerical model
在线阅读 下载PDF
Centrifuge modeling of a large-scale surcharge on adjacent foundation
9
作者 Jinzhang Zhang Zhenwei Ye +4 位作者 Dongming Zhang Hongwei Huang Shijie Han Tong Zou Le Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3181-3191,共11页
This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered load... This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure. 展开更多
关键词 centrifuge modeling Stone column Composite foundation Ground movement Raft foundation
在线阅读 下载PDF
Distribution law analysis and calculating method for windage power in a geotechnical centrifuge
10
作者 Chuanxiang ZHENG Yuchen DAI +4 位作者 Jiao LIN Jianqun JIANG Jinjie LU Zhenyu WANG Jiaming YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第11期938-952,共15页
Temperature rise caused by windage power is a major limitation to the large-scale process of geotechnical centrifuges.However,there is no consensus on how to identify the key parts(parts with high windage power consum... Temperature rise caused by windage power is a major limitation to the large-scale process of geotechnical centrifuges.However,there is no consensus on how to identify the key parts(parts with high windage power consumption)and parameters(the velocity coefficientαand windage coefficient C_(i)),and the influence of idle power is often neglected in methods for calculating windage power.To address these issues,a Centrifugal Hypergravity and Interdisciplinary Experiment Facility(CHIEF)scaled model device was constructed,and the windage power was measured.Then,a computational fluid dynamics(CFD)model of the device was established and validated by experimental results.Simulation results were analyzed to quantify the proportion of the windage power in different parts of the device and summarize the variation law of key parameters.Finally,a novel windage power calculation equation was developed based on the elimination of the influence of the idle power.Results show that the role of the rotating arm cannot be ignored in the selection of key parts.The velocity coefficient and windage coefficient are a function of the device geometry and size,and are independent of the angular velocity.The windage power is proportional to the cube of the angular velocity after eliminating the effect of idle power. 展开更多
关键词 Geotechnical centrifuge Windage power Key parts and parameters Centrifugal Hypergravity and Interdisciplinary Experiment Facility(CHIEF) Idle power
原文传递
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:13
11
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
在线阅读 下载PDF
Numerical modeling of centrifuge cyclic lateral pile load experiments 被引量:8
12
作者 Nikos Gerolymos Sandra Escoffier +1 位作者 George Gazetas Jacques Garnier 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期61-76,共16页
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir... To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented. 展开更多
关键词 centrifuge test Winkler model p-y curves cyclic loading pile-soil separation/gapping nonlinear response experimental validation
在线阅读 下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:8
13
作者 Michael O'Rourke Vikram Gadicherla Tarek Abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
在线阅读 下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:7
14
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT centrifuge model test
在线阅读 下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:5
15
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE SLOPE stability SLOPE FAILURE centrifuge model test
原文传递
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:6
16
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer centrifuge experiment Deep-sea surface soil Undrained shear strength Penetration resistance factor Water cavity
在线阅读 下载PDF
Centrifuge modeling of dynamic behavior of pile-reinforced slopes during earthquakes 被引量:5
17
作者 于玉贞 邓丽军 +1 位作者 孙逊 吕禾 《Journal of Central South University》 SCIE EI CAS 2010年第5期1070-1078,共9页
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre... A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period. 展开更多
关键词 EARTHQUAKE SLOPE stabilizing pile dynamic behavior centrifuge modeling earth pressure ACCELERATION bending moment
在线阅读 下载PDF
Tribological and wear performance of centrifuge cast functional graded copper based composite at dry sliding conditions 被引量:5
18
作者 N.RADHIKA Manu SAM 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2961-2973,共13页
Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient ... Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient of the inner wall thickness of hollow cylindrical cast specimen was analyzed using Taguchi based L27 orthogonal array,where the percentage of graphite particles were observed higher.Variable process parameters those influenced the rate of wear directly or indirectly were:applied load(15,25 and 35 N),slide velocity(1.5,2.5 and 3.5 m/s)and slide distance(750,1500 and 2250 m).Rate of wear and friction coefficient showed a proportional dependency with applied load and slide distance,whereas showing a decline during intermediate slide velocity.Signal-to-Noise ratio predicted the minimal tribo-condition,on‘smaller-the-better’basis.Analysis of Variance technique quantified the influence of affecting parameters,along with their interactions.Regression analysis was utilized for the validation of the experimental data.Micrographs and scanning electron microscopy exhibited the wear mechanisms and mechanically mixed layer formation during worn surfaces analysis. 展开更多
关键词 functional graded materials centrifuge casting adhesive wear Taguchi TRIBOLOGY
在线阅读 下载PDF
Experimental study of vertical and batter pile groups in saturated sand using a centrifuge shaking table 被引量:6
19
作者 Zhang Jian Li Yurun +3 位作者 Yan Zhixiao Huang Da Rong Xian Liang Yan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期23-36,共14页
To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.... To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred. 展开更多
关键词 centrifuge shaking table vertical and batter pile group saturated sand LIQUEFACTION dynamic response
在线阅读 下载PDF
Uplift mechanism for a shallow-buried structure in liquefi able sand subjected to seismic load: centrifuge model test and DEM modeling 被引量:5
20
作者 Zhou Jian Wang Zihan +1 位作者 Chen Xiaoliang Zhang Jiao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期203-214,共12页
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s... Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power. 展开更多
关键词 centrifuge modeling underground structure LIQUEFACTION distinct element method saturated sand
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部