Fission cross sections strongly depend on the ratio of the level density parameter in fission to neutron emission, af/an . In this work, a cascade-exciton model implemented in the code CEM95 has been used to observe t...Fission cross sections strongly depend on the ratio of the level density parameter in fission to neutron emission, af/an . In this work, a cascade-exciton model implemented in the code CEM95 has been used to observe this effect for proton induced fission cross sections of tungsten, lead and bismuth. The method was employed using different level density parameter ratios for each fission cross section calculation. The calculated fission cross sections are compared with the available experimental data in the literature. It has been observed that a change of the ratio of the level density parameter, af/an , is necessary with the incident energy of the proton, to best estimate the fission cross sections in CEM95.展开更多
The fission cross section and fission probability of 197Au, induced by (1665 MeV) π-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 16...The fission cross section and fission probability of 197Au, induced by (1665 MeV) π-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 1665 MeV was produced at AGS of Brookhaven National Laboratory, USA, and allowed to fall normally on the stack. Two detectors from the stack were scanned for fission fragment tracks after etching in 6N NaOH at 70 ℃. The statistics of fission fragment tracks in both detectors were obtained. It was found that there was a marked asymmetry of registered tracks with respect to the forward and backward hemispheres. This asymmetry could be partly accounted for on the basis of momentum transfer to the struck nucleus. On the basis of counting statistics fission cross section was measured, and fission probability was determined by dividing the fission cross section with the reaction cross section. The fission cross-section and fission probability were compared with the computed values using the caseade-exciton model code CEM95.展开更多
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile. In this research work, a cascade-exciton model (using CEM95 computer code) has been imp...Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile. In this research work, a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission. The analysis has been performed for both the positive and negative pions as the projectile at 80, 100 and 150 MeV energies. The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature. We observed a smooth dependence at 150 MeV, and a sharper dependence at 80 and 100 MeV pion energy, in the fissility region above 29.44.展开更多
文摘Fission cross sections strongly depend on the ratio of the level density parameter in fission to neutron emission, af/an . In this work, a cascade-exciton model implemented in the code CEM95 has been used to observe this effect for proton induced fission cross sections of tungsten, lead and bismuth. The method was employed using different level density parameter ratios for each fission cross section calculation. The calculated fission cross sections are compared with the available experimental data in the literature. It has been observed that a change of the ratio of the level density parameter, af/an , is necessary with the incident energy of the proton, to best estimate the fission cross sections in CEM95.
文摘The fission cross section and fission probability of 197Au, induced by (1665 MeV) π-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 1665 MeV was produced at AGS of Brookhaven National Laboratory, USA, and allowed to fall normally on the stack. Two detectors from the stack were scanned for fission fragment tracks after etching in 6N NaOH at 70 ℃. The statistics of fission fragment tracks in both detectors were obtained. It was found that there was a marked asymmetry of registered tracks with respect to the forward and backward hemispheres. This asymmetry could be partly accounted for on the basis of momentum transfer to the struck nucleus. On the basis of counting statistics fission cross section was measured, and fission probability was determined by dividing the fission cross section with the reaction cross section. The fission cross-section and fission probability were compared with the computed values using the caseade-exciton model code CEM95.
文摘Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile. In this research work, a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission. The analysis has been performed for both the positive and negative pions as the projectile at 80, 100 and 150 MeV energies. The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature. We observed a smooth dependence at 150 MeV, and a sharper dependence at 80 and 100 MeV pion energy, in the fissility region above 29.44.