CE-1 Lunar Microwave Sounder (CELMS) is the first passive microwave radiometer in the world to sound the surface of the Moon in the lunar orbit at altitude of 200 km. The scientific objective of CELMS is to obtain glo...CE-1 Lunar Microwave Sounder (CELMS) is the first passive microwave radiometer in the world to sound the surface of the Moon in the lunar orbit at altitude of 200 km. The scientific objective of CELMS is to obtain global brightness temperature (TB) of the Moon, to retrieve information on lunar regolith, and to evaluate the distribution of helium-3 on the Moon implanted by solar wind. Before launch of CELMS, a series of experiments were carried out in laboratories to test the performances of the systems, and to calibrate the responses between the input of TB and the output of voltage from the receivers. However, the thermal condition exposed to CELMS is more complicated in lunar orbit than on the Earth, which makes the temperatures of different parts of CELMS wave vary greatly, and the cosmic background is not very clean due to the pointing of cold space antenna to the direction of the satellite running, which brings uncertainties into data-processing of CELMS when the temperature of cold space is used as a calibrator. Furthermore, the lack of knowledge on the lunar ingredients and compositions, distributions of physical temperatures, and properties on lunar microwave radiation leads to difficulties in validating the measurements and retrievals of CELMS. By analyzing the results of ground experiments and the measurements of CELMS in-orbit, along with our knowledge of the properties of lunar surface, here we give algorithms on calibration and antenna pattern correction (APC) of CELMS. We also describe in detail the principle of microwave transfer among the elements of CELMS, and discuss the method on testing calibration parameters of the system. In addition, the theory and model on correction antenna pattern of CELMS are developed by comparing antenna temperatures by CELMS with those simulated by microwave radiative transfer models. The global distribution of TB is given and the features of TB are analyzed. Our results show rich information included in TB on the properties of lunar regolith, especially the thickness and dielectric constant, which are nearly directly reflected by the differences of TB at day and those at night.展开更多
Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled tempo...Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang'E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.展开更多
Lunar regolith parameters, such as physical temperature, thickness and dielectric constant, are important in studying regolith features, distribution of lunar resources and evolution of the Moon. There had been no mea...Lunar regolith parameters, such as physical temperature, thickness and dielectric constant, are important in studying regolith features, distribution of lunar resources and evolution of the Moon. There had been no measurement obtained by lunar-orbit-borne microwave radiometer applied to evaluate the properties of lunar regolith before CE-1 Lunar Microwave Sounder (CELMS) being launched. CEMLS is the first passive microwave radiometer in the world to sound the surface of the Moon. The brightness temperatures (TB) sensed by CELMS include complicated information on the above geophysical parameters. In this paper, algorithms of retrieving dielectric constant, regolith thickness, and 3He content from CELMS brightness temperatures are developed, and the results are compared with those from literature. The results show that the regolith thicknesses are mostly in the range of 4.0-6.0 m, and 43% of them are bigger than 5.0 m. The content of 3He evaluated by retrieved regolith thickness is about 1.03 million tons.展开更多
Investigation on Lunar polar area is almost every lunar mission’s primary objective in recent years. The rationale behind it is that illumination and ice resources in this area can be potentially very helpful for con...Investigation on Lunar polar area is almost every lunar mission’s primary objective in recent years. The rationale behind it is that illumination and ice resources in this area can be potentially very helpful for constructing lunar human base. In this paper, we analyze microwave radiometric characteristics of the Moon by using the newly acquired Chang’E-1 Lunar Microwave Sounder (CELMS) data. Microwave brightness temperature at Lunar South Pole (LSP) is distributed regularly with a style of "ring-in-ring", decreasing from equator to pole. Regolith temperature gradient is bigger at lunar equator than at polar area. Brightness temperature diurnal difference decreases with observation frequency. Microwave brightness temperature distribution maps at LSP and Lunar North Pole (LNP) have been made based on the analysis. It is found that microwave brightness temperature becomes to synchronize with elevation beyond -85° latitude. This phenomenon is related to lightening condition and indicates temperature distribution at LSP. The brightness temperature anomaly cold points are potentially cold trap areas for water or ice while hot points imply plenty of illumination resources there.展开更多
The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moo...The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.展开更多
As a potential nuclear fuel, 3He element is significant for both the solution of impending human energy crisis and the conservation of natural environment. Lunar regolith contains abundant and easily extracted 3He. Ba...As a potential nuclear fuel, 3He element is significant for both the solution of impending human energy crisis and the conservation of natural environment. Lunar regolith contains abundant and easily extracted 3He. Based on the analyses of the impact factors of 3He abundance, here we have compared a few key assessment parameters and approaches used in lunar regolith 3He reserve estimation and some representative estimation results, and discussed the issues concerned in 3He abundance variation and 3He reserve estimation. Our studies suggest that in a range of at least meters deep, 3He abundance in lunar regolith is homogeneously distributed and generally does not depend on the depth; lunar regolith has long been in a saturation state of 3He trapped by minerals through chemical bonds, and the temperature fluctuation on the lunar surface exerts little influence on the lattice 3He abundance. In terms of above conclusions and the newest lunar regolith depth data from the microwave brightness temperature retrieval of the "ChangE-1" Lunar Microwave Sounder, a new 3He reserve estimation has been presented.展开更多
One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation ...One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.展开更多
文摘CE-1 Lunar Microwave Sounder (CELMS) is the first passive microwave radiometer in the world to sound the surface of the Moon in the lunar orbit at altitude of 200 km. The scientific objective of CELMS is to obtain global brightness temperature (TB) of the Moon, to retrieve information on lunar regolith, and to evaluate the distribution of helium-3 on the Moon implanted by solar wind. Before launch of CELMS, a series of experiments were carried out in laboratories to test the performances of the systems, and to calibrate the responses between the input of TB and the output of voltage from the receivers. However, the thermal condition exposed to CELMS is more complicated in lunar orbit than on the Earth, which makes the temperatures of different parts of CELMS wave vary greatly, and the cosmic background is not very clean due to the pointing of cold space antenna to the direction of the satellite running, which brings uncertainties into data-processing of CELMS when the temperature of cold space is used as a calibrator. Furthermore, the lack of knowledge on the lunar ingredients and compositions, distributions of physical temperatures, and properties on lunar microwave radiation leads to difficulties in validating the measurements and retrievals of CELMS. By analyzing the results of ground experiments and the measurements of CELMS in-orbit, along with our knowledge of the properties of lunar surface, here we give algorithms on calibration and antenna pattern correction (APC) of CELMS. We also describe in detail the principle of microwave transfer among the elements of CELMS, and discuss the method on testing calibration parameters of the system. In addition, the theory and model on correction antenna pattern of CELMS are developed by comparing antenna temperatures by CELMS with those simulated by microwave radiative transfer models. The global distribution of TB is given and the features of TB are analyzed. Our results show rich information included in TB on the properties of lunar regolith, especially the thickness and dielectric constant, which are nearly directly reflected by the differences of TB at day and those at night.
基金supported by "CE-1" Lunar Microwave Sounder Program
文摘Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang'E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.
基金supported by "CE-1" Lunar Microwave Sounder Program
文摘Lunar regolith parameters, such as physical temperature, thickness and dielectric constant, are important in studying regolith features, distribution of lunar resources and evolution of the Moon. There had been no measurement obtained by lunar-orbit-borne microwave radiometer applied to evaluate the properties of lunar regolith before CE-1 Lunar Microwave Sounder (CELMS) being launched. CEMLS is the first passive microwave radiometer in the world to sound the surface of the Moon. The brightness temperatures (TB) sensed by CELMS include complicated information on the above geophysical parameters. In this paper, algorithms of retrieving dielectric constant, regolith thickness, and 3He content from CELMS brightness temperatures are developed, and the results are compared with those from literature. The results show that the regolith thicknesses are mostly in the range of 4.0-6.0 m, and 43% of them are bigger than 5.0 m. The content of 3He evaluated by retrieved regolith thickness is about 1.03 million tons.
基金supported by National Natural Science Foundation of China (Grant No. 40601066)Chinese "Chang’E-1" Project Microwave Radiometer Item
文摘Investigation on Lunar polar area is almost every lunar mission’s primary objective in recent years. The rationale behind it is that illumination and ice resources in this area can be potentially very helpful for constructing lunar human base. In this paper, we analyze microwave radiometric characteristics of the Moon by using the newly acquired Chang’E-1 Lunar Microwave Sounder (CELMS) data. Microwave brightness temperature at Lunar South Pole (LSP) is distributed regularly with a style of "ring-in-ring", decreasing from equator to pole. Regolith temperature gradient is bigger at lunar equator than at polar area. Brightness temperature diurnal difference decreases with observation frequency. Microwave brightness temperature distribution maps at LSP and Lunar North Pole (LNP) have been made based on the analysis. It is found that microwave brightness temperature becomes to synchronize with elevation beyond -85° latitude. This phenomenon is related to lightening condition and indicates temperature distribution at LSP. The brightness temperature anomaly cold points are potentially cold trap areas for water or ice while hot points imply plenty of illumination resources there.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901159 and40901187)Doctoral Fund of Ministry of Education of China (Grant No.20090061120055)+1 种基金the Basic Project Operating Fund of Jilin university(Grant No. 200903047)High-Tech Research and Development (863)Programme (Grant Nos. 2010AA122203 and 2008AA12A212)
文摘The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.
基金supported by National Natural Science Foundation of China (Grant No.40601066)Lunar Microwave Sounder Program of "ChangE-1" Project
文摘As a potential nuclear fuel, 3He element is significant for both the solution of impending human energy crisis and the conservation of natural environment. Lunar regolith contains abundant and easily extracted 3He. Based on the analyses of the impact factors of 3He abundance, here we have compared a few key assessment parameters and approaches used in lunar regolith 3He reserve estimation and some representative estimation results, and discussed the issues concerned in 3He abundance variation and 3He reserve estimation. Our studies suggest that in a range of at least meters deep, 3He abundance in lunar regolith is homogeneously distributed and generally does not depend on the depth; lunar regolith has long been in a saturation state of 3He trapped by minerals through chemical bonds, and the temperature fluctuation on the lunar surface exerts little influence on the lattice 3He abundance. In terms of above conclusions and the newest lunar regolith depth data from the microwave brightness temperature retrieval of the "ChangE-1" Lunar Microwave Sounder, a new 3He reserve estimation has been presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371332 & 41590851)the Fundamental Research Funds for the Central Universities (Grant No. JCKY-QKJC23)the Science and Technology Development Fund of Macao (Grant No. 110/2014/A3)
文摘One of the essential controls on the microwave thermal emissions(MTE) of the lunar regolith is the abundance of Fe O and TiO_2, known as the(Fe O+Ti O_2) abundance(FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature(T_B) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder(CELMS) data from the Chang'E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that:(1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and(2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.