心电信号容易受到采集设备和被测者状态的干扰,为此提出一种归一化最小均方差(Normalized Least Mean Square,NLMS)和自适应噪声完备集合模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)组合的...心电信号容易受到采集设备和被测者状态的干扰,为此提出一种归一化最小均方差(Normalized Least Mean Square,NLMS)和自适应噪声完备集合模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)组合的去噪方法。其中:优化的NLMS算法通过简化步长因子和输入信号的关系减少运算量,并结合迭代次数对步长因子进行优化,提高算法收敛性能;改进的CEEMDAN算法结合高斯白噪声的统计特性对所有IMF分量进行显著性检验,来识别和筛选含有噪声的成分,使干净信号与噪声信号分离。实验结果表明,在不同噪声强度下,该方法相比于CEEMDAN直接去噪效果更佳,且缓解了传统NLMS收敛速度与运算量之间的矛盾。展开更多
文摘心电信号容易受到采集设备和被测者状态的干扰,为此提出一种归一化最小均方差(Normalized Least Mean Square,NLMS)和自适应噪声完备集合模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)组合的去噪方法。其中:优化的NLMS算法通过简化步长因子和输入信号的关系减少运算量,并结合迭代次数对步长因子进行优化,提高算法收敛性能;改进的CEEMDAN算法结合高斯白噪声的统计特性对所有IMF分量进行显著性检验,来识别和筛选含有噪声的成分,使干净信号与噪声信号分离。实验结果表明,在不同噪声强度下,该方法相比于CEEMDAN直接去噪效果更佳,且缓解了传统NLMS收敛速度与运算量之间的矛盾。