分别用甲酸、乙酸及乙酸-乙酸钠缓冲溶液调节毛用活性染料Intrafast Black CE-G的染浴pH值,对比了其在染色前后染浴pH值的变化,以及不同pH下染料的上染情况。结果表明:采用乙酸-乙酸钠缓冲溶液,控制染浴pH值在4.0条件下,上色率和固色率...分别用甲酸、乙酸及乙酸-乙酸钠缓冲溶液调节毛用活性染料Intrafast Black CE-G的染浴pH值,对比了其在染色前后染浴pH值的变化,以及不同pH下染料的上染情况。结果表明:采用乙酸-乙酸钠缓冲溶液,控制染浴pH值在4.0条件下,上色率和固色率均在99%以上。展开更多
以硝酸铈和尿素为原料,1,3,5苯三甲酸为配体,采用简单的静电自组装法合成了铈金属有机框架(Ce-BTC)和石墨相氮化碳(g-C_(3)N_(4))的复合材料(Ce-BTC/g-C_(3)N_(4)),用于二氧化碳还原制一氧化碳的研究,并探索Ce-BTC的复合对g-C_(3)N_(4)...以硝酸铈和尿素为原料,1,3,5苯三甲酸为配体,采用简单的静电自组装法合成了铈金属有机框架(Ce-BTC)和石墨相氮化碳(g-C_(3)N_(4))的复合材料(Ce-BTC/g-C_(3)N_(4)),用于二氧化碳还原制一氧化碳的研究,并探索Ce-BTC的复合对g-C_(3)N_(4)性能的影响机制。利用X射线衍射、红外光谱、扫描电子显微镜、紫外-可见光吸收光谱、荧光光谱、阻抗、光电流测试和CO_(2)还原性能测试对复合材料的结构、形貌、光电学性能及催化性能进行研究。结果表明Ce-BTC与g-C_(3)N_(4)的复合可能使得g-C_(3)N_(4)层间距发生改变,在细化晶体颗粒的同时提高样品比表面积,使复合样品获得更高的可见光捕获能力且载流子的分离效率更高;在仅加入1 mL H2O作为质子提供源的前提下,Ce-BTC/g-C_(3)N_(4)-3拥有最优光催化性能。CO产率为19.02μmol/(h·g),是g-C_(3)N_(4)的2.25倍,循环测试后催化性能基本保持稳定。展开更多
The red, green and blue (R/G/B) tricolor emitting phosphors Ba2ZnSi2O7 co-doped with Ce3+and Eu3+were synthesized in air atmosphere by a conventional high temperature solid-state reaction technique. All of the exc...The red, green and blue (R/G/B) tricolor emitting phosphors Ba2ZnSi2O7 co-doped with Ce3+and Eu3+were synthesized in air atmosphere by a conventional high temperature solid-state reaction technique. All of the excitation spectrum of the phosphor Ba2ZnSi2O7:Ce,Eu showed a strong broad band absorption in the n-UV region whenever monitored by red (630 nm)-emitting or by green (500 nm)-and blue (402 nm)-emitting. Under the excitation of 330 nm, the emission spectrum containing a blue-violet emis-sion band, a green emission and four sharp lines originated from the characteristic transitions of Ce3+, Eu2+and Eu3+ions, of which the relative intensities of the three emission bands could be controlled by the doping concentration of Ce3+. The ca. CIE chromaticity co-ordinates (x=0.317, y=0.309) of the phosphor Ba1.94ZnSi2O7:0.03Eu,0.01Ce was very close to the standard white (x=0.33, y=0.33), which suggested that it was a novel single-phased white-light emitting phosphor for LED-based near-UV chip. The mechanisms of energy transfer from Eu2+to Eu3+via Ce3+was also discussed.展开更多
A series of double-hydrophilic double-grafted PMA-g-PEG/PDMA copolymers, which contained poly(methacrylate) (PMA) as backbone, poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide) (PDMA) as side ch...A series of double-hydrophilic double-grafted PMA-g-PEG/PDMA copolymers, which contained poly(methacrylate) (PMA) as backbone, poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide) (PDMA) as side chains synthesized successfully by using reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP), were used as physical coatings for the evaluation of protein-resistant properties by capillary electrophoresis (CE). Electroosmotic flow (EOF) measurement results showed that the PMA-g-PEG/PDMA copolymer coated capillaries could suppress electroosmotic mobility in a wide pH range (pH = 2.8-9.8) and EOF mobility decreased with the increase of copolymer molecular mass and PDMA content. At the same time, protein recovery, theoretical plate number of separation and repeatability of migration time demonstrated that antifouling efficiency was improved with the increase of molecular mass and PEG content.展开更多
文摘以硝酸铈和尿素为原料,1,3,5苯三甲酸为配体,采用简单的静电自组装法合成了铈金属有机框架(Ce-BTC)和石墨相氮化碳(g-C_(3)N_(4))的复合材料(Ce-BTC/g-C_(3)N_(4)),用于二氧化碳还原制一氧化碳的研究,并探索Ce-BTC的复合对g-C_(3)N_(4)性能的影响机制。利用X射线衍射、红外光谱、扫描电子显微镜、紫外-可见光吸收光谱、荧光光谱、阻抗、光电流测试和CO_(2)还原性能测试对复合材料的结构、形貌、光电学性能及催化性能进行研究。结果表明Ce-BTC与g-C_(3)N_(4)的复合可能使得g-C_(3)N_(4)层间距发生改变,在细化晶体颗粒的同时提高样品比表面积,使复合样品获得更高的可见光捕获能力且载流子的分离效率更高;在仅加入1 mL H2O作为质子提供源的前提下,Ce-BTC/g-C_(3)N_(4)-3拥有最优光催化性能。CO产率为19.02μmol/(h·g),是g-C_(3)N_(4)的2.25倍,循环测试后催化性能基本保持稳定。
基金Project supported by the National Natural Science Foundation of China(20971042)Specialized Research Fund for the Doctoral Program of Higher Education(20124306120005,20134306120009)+2 种基金Hunan Provincial Natural Science Foundation of China(2015JJ2100)Scientific Research Fund of Hunan Provincial Education Department(13C012)Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘The red, green and blue (R/G/B) tricolor emitting phosphors Ba2ZnSi2O7 co-doped with Ce3+and Eu3+were synthesized in air atmosphere by a conventional high temperature solid-state reaction technique. All of the excitation spectrum of the phosphor Ba2ZnSi2O7:Ce,Eu showed a strong broad band absorption in the n-UV region whenever monitored by red (630 nm)-emitting or by green (500 nm)-and blue (402 nm)-emitting. Under the excitation of 330 nm, the emission spectrum containing a blue-violet emis-sion band, a green emission and four sharp lines originated from the characteristic transitions of Ce3+, Eu2+and Eu3+ions, of which the relative intensities of the three emission bands could be controlled by the doping concentration of Ce3+. The ca. CIE chromaticity co-ordinates (x=0.317, y=0.309) of the phosphor Ba1.94ZnSi2O7:0.03Eu,0.01Ce was very close to the standard white (x=0.33, y=0.33), which suggested that it was a novel single-phased white-light emitting phosphor for LED-based near-UV chip. The mechanisms of energy transfer from Eu2+to Eu3+via Ce3+was also discussed.
基金supported by the National Natural Science Foundation of China (No. 21074124)Ministry of Science and Technology of China (No. 2012CB933802)
文摘A series of double-hydrophilic double-grafted PMA-g-PEG/PDMA copolymers, which contained poly(methacrylate) (PMA) as backbone, poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide) (PDMA) as side chains synthesized successfully by using reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP), were used as physical coatings for the evaluation of protein-resistant properties by capillary electrophoresis (CE). Electroosmotic flow (EOF) measurement results showed that the PMA-g-PEG/PDMA copolymer coated capillaries could suppress electroosmotic mobility in a wide pH range (pH = 2.8-9.8) and EOF mobility decreased with the increase of copolymer molecular mass and PDMA content. At the same time, protein recovery, theoretical plate number of separation and repeatability of migration time demonstrated that antifouling efficiency was improved with the increase of molecular mass and PEG content.