期刊文献+
共找到902篇文章
< 1 2 46 >
每页显示 20 50 100
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
1
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data Social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
在线阅读 下载PDF
Generation and Analysis of Sandstone Pore Structure Images Based on CT Scanning and Generative Adversarial Network
2
作者 Zhaowei WANG Limin SUO +7 位作者 Hailong LIU Wenlong SU Xianda SUN Likai CUI Yangdong CAO Tao LIU Wenjie YANG Wenying SUN 《Agricultural Biotechnology》 2024年第6期99-101,共3页
In this study,cylindrical sandstone samples were imaged by CT scanning technique,and the pore structure images of sandstone samples were analyzed and generated by combining with StyleGAN2-ADA generative adversarial ne... In this study,cylindrical sandstone samples were imaged by CT scanning technique,and the pore structure images of sandstone samples were analyzed and generated by combining with StyleGAN2-ADA generative adversarial network(GAN)model.Firstly,nine small column samples with a diameter of 4 mm were drilled from sandstone samples with a diameter of 2.5 cm,and their CT scanning results were preprocessed.Because the change between adjacent slices was little,using all slices directly may lead to the problem of pattern collapse in the process of model generation.In order to solve this problem,one slice was selected as training data every 30 slices,and the diversity of slices was verified by calculating the LPIPS values of these slices.The results showed that the strategy of selecting one slice every 30 slices could effectively improve the diversity of images generated by the model and avoid the phenomenon of pattern collapse.Through this process,a total of 295 discontinuous two-dimensional slices were generated for the generation and segmentation analysis of sandstone pore structures.This study can provide effective data support for accurate segmentation of porous medium structures,and simultaneously improves the stability and diversity of generative adversarial network under the condition of small samples. 展开更多
关键词 StyleGAN2-ADA Generative adversarial network Adaptive data augmentation CT scanning Sandstone pore structure
在线阅读 下载PDF
A Tree-Based Data Collecting Network Structure for Wireless Sensor Networks 被引量:3
3
作者 Chi-Tsun Cheng Chi K. Tse Francis C. M. Lau 《Journal of Electronic Science and Technology of China》 2008年第3期274-278,共5页
In a sensor network with a large number of densely populated sensor nodes, a single target of interest may be detected by multiple sensor nodes simultaneously. Data collected from the sensor nodes are usually highly c... In a sensor network with a large number of densely populated sensor nodes, a single target of interest may be detected by multiple sensor nodes simultaneously. Data collected from the sensor nodes are usually highly correlated, and hence energy saving using in-network data fusion becomes possible. A traditional data fusion scheme starts with dividing the network into clusters, followed by electing a sensor node as cluster head in each cluster. A cluster head is responsible for collecting data from all its cluster members, performing data fusion on these data and transmitting the fused data to the base station. Assuming that a sensor node is only capable of handling a single node-to-node transmission at a time and each transmission takes T time-slots, a cluster head with n cluster members will take at least nT time-slots to collect data from all its cluster members. In this paper, a tree-based network structure and its formation algorithms are proposed. Simulation results show that the proposed network structure can greatly reduce the delay in data collection. 展开更多
关键词 CLUSTER data transmission network structure sensor network trees
在线阅读 下载PDF
The Study on the Evolution of Urban Spatial Structure in Zhuhai City Based on Spatial Syntax 被引量:1
4
作者 Weiqiang Zhou Fangting Liang 《Journal of Architectural Research and Development》 2024年第4期40-44,共5页
With the deepening of the Guangdong-Hong Kong-Macao Greater Bay Area strategy and the accelerated integration and development of the east and west sides of the Pearl River Estuary,Zhuhai’s hub position is becoming mo... With the deepening of the Guangdong-Hong Kong-Macao Greater Bay Area strategy and the accelerated integration and development of the east and west sides of the Pearl River Estuary,Zhuhai’s hub position is becoming more and more prominent.The city of Zhuhai has a dense water network and is divided into two urban areas,the east and the west,under the influence of the Mordor Gate waterway.Based on the theory of spatial syntax,this paper carries out an analytical study on the urban spatial structure of Zhuhai,identifies the distribution characteristics of urban POIs,and provides theoretical support for the urban development of Zhuhai. 展开更多
关键词 Spatial syntax POI data Transport network Urban spatial structure
在线阅读 下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
5
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
Virtual sensing method for monitoring vibration of continuously variable configuration structures using long short-term memory networks 被引量:4
6
作者 Zhenjiang YUE Li LIU +1 位作者 Teng LONG Yuanchen MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期244-254,共11页
Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in ... Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures. 展开更多
关键词 data-based METHOD RECURRENT neural networkS Time-varying structure VIBRATION MONITORING Virtual sensing
原文传递
A Direct Noise Suppression Method for Marine Seismic Blended Acquisition Based on an Uformer Network
7
作者 WANG Shiyu TONG Siyou +7 位作者 WANG Jingang WEI Hao HENG Shuaijia XU Xiugang YANG Dekuan ZHANG Xu WANG Shurong LI Yuxing 《Journal of Ocean University of China》 2025年第2期355-364,共10页
The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adj... The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data. 展开更多
关键词 marine seismic data processing blended noise suppression deep learning U-shaped network structure transformer common shot domain
在线阅读 下载PDF
USSL Net:Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation 被引量:1
8
作者 JIANG Zhiguo CHANG Qing 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第4期485-497,共13页
Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image ... Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function. 展开更多
关键词 structural similarity medical image segmentation deep convolution neural network automatic data enhancement algorithm
原文传递
Exploring High-Performance Architecture for Data Center Networks
9
作者 Deshun Li Shaorong Sun +5 位作者 Qisen Wu Shuhua Weng Yuyin Tan Jiangyuan Yao Xiangdang Huang Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期433-443,共11页
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin... As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks. 展开更多
关键词 data center networks dual-port server clos structure highperformance
在线阅读 下载PDF
SpaceVPX背板交换网络双冗余互连可靠性分析
10
作者 吴侃侃 周军 +3 位作者 倪涛 李林伟 张小满 汪少林 《现代电子技术》 北大核心 2025年第8期45-50,共6页
SpaceVPX标准背板控制平面、数据平面双冗余交换网络互连拓扑是实现系统高可靠数据交换的关键。根据SpaceVPX插槽、背板配置规范及可靠性模型分类,建立了一种交换网络可靠性模型,分析了整机双冗余独立备份、交换机互连备份、功能节点交... SpaceVPX标准背板控制平面、数据平面双冗余交换网络互连拓扑是实现系统高可靠数据交换的关键。根据SpaceVPX插槽、背板配置规范及可靠性模型分类,建立了一种交换网络可靠性模型,分析了整机双冗余独立备份、交换机互连备份、功能节点交叉备份、功能节点交叉与交换机互连备份、全连接备份五种拓扑形式的系统可靠性概率。不同拓扑形式的可靠性概率仿真分析结果表明,功能节点交叉备份连接方式适用于控制平面和数据平面双冗余系统。 展开更多
关键词 SpaceVPX 交换网络可靠性模型 控制平面交换 数据平面交换 冗余备份 网络拓扑结构 可靠性概率
在线阅读 下载PDF
基于异构数据的患者术后非计划内再入院预测
11
作者 俞凯 董小锋 +2 位作者 袁贞明 崔朝健 罗伟斌 《工程科学与技术》 北大核心 2025年第1期89-97,共9页
非计划内再入院是医院风险管理的重要信号,也是医疗质量的重要指标。目前,再入院预测已经成为医疗系统的一项重要任务,大量学者结合机器学习技术提出非常多有效的预测方法,但大多仅以单一结构数据为研究对象或仅使用串联方法融合异构数... 非计划内再入院是医院风险管理的重要信号,也是医疗质量的重要指标。目前,再入院预测已经成为医疗系统的一项重要任务,大量学者结合机器学习技术提出非常多有效的预测方法,但大多仅以单一结构数据为研究对象或仅使用串联方法融合异构数据。前者未能充分利用电子病历中丰富的数据与信息,后者则未能更好地融合异构数据的信息。基于上述问题,本文提出了一种基于CTFN异构数据融合方法,结合患者出院小结文本与住院期间产生的横断面数据预测患者再入院风险。预测模型的构建分为3个步骤。首先,利用RoBerta模型提取患者出院小结中的特征信息并得到表征矩阵;其次,使用CNN模型学习患者横断面特征信息,得到表征矩阵;最后,通过CTFN方法融合两个表征矩阵,得到异构数据的表征矩阵并通过线性层分类器得到最后的预测结果。CTFN融合方法利用张量外积融合多个单模态表征矩阵,并增加CNN模型及残差结构设计加强异构数据模态内与模态间的信息学习。根据某公立医院的临床数据对上述方法进行验证,实验结果表明其表现出色,其中,召回率达到了76.1%,ROC曲线下面积达到了71.5%,均高于所对比的基线模型。证实了异构数据能提升分类器预测效果,且CTFN融合方法能够更好地融合异构数据间的信息,进一步提升分类器预测效果。 展开更多
关键词 异构数据 深度学习 张量融合 再入院 卷积网络 残差结构
在线阅读 下载PDF
图强化学习算法及其在工业领域的应用研究综述
12
作者 李大字 刘子博 +2 位作者 包琰洋 董才波 徐昕 《国防科技大学学报》 北大核心 2025年第4期76-90,共15页
强化学习在决策支持、组合优化及智能控制等领域的成功应用推动了其对复杂工业场景的探索,然而现有强化学习方法难以迁移到非欧几里得空间的图结构数据。图神经网络在学习图结构数据方面表现出卓越的性能,为此,通过将图与强化学习结合... 强化学习在决策支持、组合优化及智能控制等领域的成功应用推动了其对复杂工业场景的探索,然而现有强化学习方法难以迁移到非欧几里得空间的图结构数据。图神经网络在学习图结构数据方面表现出卓越的性能,为此,通过将图与强化学习结合将图结构数据引入强化学习任务中,丰富了强化学习的知识表征,为解决复杂工业过程问题提供了新范式。系统梳理了图强化学习算法在工业领域的研究进展,从算法架构层面归纳总结图强化学习算法并提炼出了三大主流范式,探讨了其在生产调度、工业知识图谱推理、工业互联网及电力系统领域的应用进展,并分析了当前该领域面临的挑战与未来的发展趋势。 展开更多
关键词 强化学习 图神经网络 图强化学习 图结构数据
在线阅读 下载PDF
人工智能产业的发展和治理研究
13
作者 詹小颖 黄焕克 +5 位作者 贾点点 沈玉龙 刘再春 廖志豪 梁文光 刘磊 《工业技术经济》 北大核心 2025年第10期43-58,共16页
在以习近平同志为核心的党中央的英明领导下,我国人工智能产业发展和大模型研发应用已处于全球第一梯队。2025年8月,《国务院关于深入实施“人工智能+”行动的意见》为进一步推动人工智能与经济社会各行业各领域广泛深度融合擘画了宏伟... 在以习近平同志为核心的党中央的英明领导下,我国人工智能产业发展和大模型研发应用已处于全球第一梯队。2025年8月,《国务院关于深入实施“人工智能+”行动的意见》为进一步推动人工智能与经济社会各行业各领域广泛深度融合擘画了宏伟蓝图。智能经济发展的蓬勃发展,离不开智能技术的快速进步,更不能缺少企业组织更新和战略调整来把握新发展机遇、挖掘新潜力。然而,潜力无限的智能经济也蕴藏着较大的技术风险和社会风险,例如,数据安全、弱势劳动者失业等。因此,全社会应积极预判各类风险,制定应对之策推动人工智能经济稳定健康发展。 展开更多
关键词 人工智能 人机协作 数据安全 就业结构 创新赋能 特色产业 经济风险 技术创新网络
在线阅读 下载PDF
基于CGRU-Mask神经网络的超高层结构监测数据修复方法
14
作者 杨彬 潘立程 +2 位作者 朱海涛 孙思远 张其林 《建筑结构》 北大核心 2025年第7期89-96,共8页
结构健康监测是验证结构设计理论以及结构状态评估的重要方法。受外部环境因素和传感器设备不稳定的影响,超高层结构健康监测系统存在数据缺失问题,严重影响结构状态评估。以上海中心大厦加速度监测数据为研究对象,利用结构不同空间位... 结构健康监测是验证结构设计理论以及结构状态评估的重要方法。受外部环境因素和传感器设备不稳定的影响,超高层结构健康监测系统存在数据缺失问题,严重影响结构状态评估。以上海中心大厦加速度监测数据为研究对象,利用结构不同空间位置处振动响应之间的空间相关性,采用卷积-门控循环单元神经网络(CGRU),并引入掩码(Mask)层,对完全随机缺失的加速度监测数据进行修复,并对比了几种常见神经网络在不同缺失率下的数据修复效果。结果表明,CGRU-Mask神经网络模型能够有效解决加速度监测数据完全随机缺失的问题,且在高缺失率情况下含有Mask层神经网络的性能显著高于未引入Mask层的神经网络。此外,对修复数据进行模态分析的结果表明,高缺失率下的修复数据依旧能与完整数据的模态频率识别结果一致。 展开更多
关键词 超高层结构 结构健康监测 空间相关性 CGRU-Mask神经网络 数据修复
在线阅读 下载PDF
基于复杂网络的境外天然气市场结构变化分析 被引量:3
15
作者 赵宇 王琨 +6 位作者 张艳飞 陈其慎 管青 龙涛 任鑫 商铖红 于起 《地球学报》 北大核心 2025年第5期979-990,共12页
天然气市场是能源市场中重要的一部分,其在2021—2023年期间发生重大变化,能源市场随之改变,本文运用复杂网络的方法讨论了2021—2023年期间全球天然气市场结构的变化。第一,构建2021—2023年期间市场网络,利用Topsis模型与社团分析模... 天然气市场是能源市场中重要的一部分,其在2021—2023年期间发生重大变化,能源市场随之改变,本文运用复杂网络的方法讨论了2021—2023年期间全球天然气市场结构的变化。第一,构建2021—2023年期间市场网络,利用Topsis模型与社团分析模型对这期间的天然气市场结构的演化过程进行了仿真,计算了复杂网络各节点的重要性排名和社团成员,反应这期间市场结构变化。第二,利用抗毁性评估模型对市场网络进行随机和蓄意的攻击,通过计算攻击后连通效率和最大连通子图等指标衡量攻击对网络造成的影响,以此反应市场结构的稳定性变化。研究结果表明:(1)在此期间,从以欧洲为主导向着区域多中心发展,各地区之间竞争激烈。美国保持液化天然气市场的龙头地位,欧洲的地位总体有所下降,非洲、中东等新兴市场崛起。(2)俄罗斯社团被拆分,液化天然气选择与亚洲加深合作但社团规模仍持续缩小,管道天然气社团被拆分但后有所恢复。美国社团不断扩张并保持这一趋势。(3)天然气市场结构在此期间稳定性先降低,后恢复稳定,未来的天然气市场结构将持续变化但变化幅度有所减小。 展开更多
关键词 天然气 市场结构 复杂网络 大数据分析 图形数据社区发现
在线阅读 下载PDF
从二维到三维:城市绿色空间生态系统服务评估技术进展 被引量:1
16
作者 邓琪鹏 刘耕源 +2 位作者 杨青 常玮岑 陈钰 《应用生态学报》 北大核心 2025年第8期2541-2551,共11页
城市绿色空间作为缓解“城市病”的重要自然解决方案,因其在提供生态系统服务方面的显著作用而备受关注。然而,现有研究对城市绿色空间生态系统服务的评估多局限于二维空间特征,对三维结构特征及其生态系统服务效应的评估存在不足,难以... 城市绿色空间作为缓解“城市病”的重要自然解决方案,因其在提供生态系统服务方面的显著作用而备受关注。然而,现有研究对城市绿色空间生态系统服务的评估多局限于二维空间特征,对三维结构特征及其生态系统服务效应的评估存在不足,难以全面、准确地揭示绿色空间对居民福祉提升的实际贡献。本文系统梳理了城市绿色空间生态系统服务的现有评估方法,深入分析二维空间评估方法的局限性,并重点探讨了新兴技术(如激光雷达、街景图像和人工智能算法等)在三维空间评估中的应用进展。基于此,本文提出了融合新兴技术与城市绿色空间生态系统服务三维评估的创新研究框架,并针对当前技术在数据处理效率以及多尺度应用方面的挑战,探讨了未来研究的发展方向,以期为城市绿色空间的精细化管理和可持续发展提供理论支持和实践参考。 展开更多
关键词 绿色基础设施 生态网络 空间结构 多源数据 人工智能
原文传递
时空图神经网络在物联网中的应用综述 被引量:1
17
作者 张建伟 陈旭 +2 位作者 王叔洋 景永俊 宋吉飞 《计算机工程与应用》 北大核心 2025年第5期43-54,共12页
随着物联网在各个领域物理设备的发展,产生的大量数据给当前数据处理方法带来了挑战。深度学习模型具备处理大规模和高维度数据的能力,已逐渐应用于物联网不同领域。时空图神经网络作为一种处理图结构数据的深度学习模型,能够对物联网... 随着物联网在各个领域物理设备的发展,产生的大量数据给当前数据处理方法带来了挑战。深度学习模型具备处理大规模和高维度数据的能力,已逐渐应用于物联网不同领域。时空图神经网络作为一种处理图结构数据的深度学习模型,能够对物联网中的拓扑结构和时间信息进行建模,并在物联网预测任务中展现出优秀性能。介绍了物联网中的时间相关性和空间相关性,以及不同时空网络架构的构建方法,并基于空间相关性的不同,将时空图神经网络分为时空图卷积网络和时空图注意力网络。进一步分析了时空图卷积网络和时空图注意力网络在物联网中的应用,主要包括交通、环境和能源领域。最后,探讨了时空图神经网络在物联网应用中面临的挑战和未来的研究方向。 展开更多
关键词 物联网 深度学习 时空图神经网络 图结构数据
在线阅读 下载PDF
长江经济带城市快递物流网络空间结构及影响机制研究 被引量:2
18
作者 葛迎遨 杨山 杜海波 《地理研究》 北大核心 2025年第1期110-128,共19页
在全球化和信息化的影响下,快递物流网络已成为城市网络的重要组成部分。文章基于有向加权的快递物流数据,运用节点对称性、链接对称性、PageRank算法、社区发现、指数随机图模型(ERGM)等方法,对长江经济带城市快递物流网络空间结构及... 在全球化和信息化的影响下,快递物流网络已成为城市网络的重要组成部分。文章基于有向加权的快递物流数据,运用节点对称性、链接对称性、PageRank算法、社区发现、指数随机图模型(ERGM)等方法,对长江经济带城市快递物流网络空间结构及影响机制进行探究,研究发现:①长江经济带城市快递物流网络呈现出以上海、杭州、苏州、成都、重庆、南京、武汉、金华等城市为核心的多中心化、层级式网络结构,下游地区城市间快递联系的紧密程度显著大于中、上游地区。②从快递流动的方向性来看,长江经济带上、中、下游地区的城市均以流入型为主,平衡型与流出型城市主要分布在下游地区,且下游地区内部城市间快递往来的对称程度较高。③长江经济带城市快递物流的空间组织受到行政边界和地域邻近的影响,在区域中形成了与上、中、下游地区范围基本耦合的三个社区。④根据ERGM的估计结果,长江经济带城市间的快递联系存在互惠效应,并受到城市间地理距离的制约。从城市的接收者效应来看,人口规模对城市的快递流入具有正向影响;从城市的发出者效应来看,商品供给能力对城市的快递流出具有正向影响,供需关系的存在是城市快递物流网络形成的基本动力。 展开更多
关键词 快递物流 城市网络 有向加权 空间结构 影响机制 长江经济带
原文传递
基于LSTM的大跨钢结构施工监测数据修复研究 被引量:1
19
作者 张志勇 朱松林 +2 位作者 赵晓明 巴盼锋 苗吉军 《建筑结构》 北大核心 2025年第9期22-28,共7页
结构施工监测系统是保障结构施工安全的重要手段,然而在施工监测期间时常由于现场临时供电情况或者在施工过程中传感器突然被破坏等问题,导致数据丢失,造成结构健康监测数据不完整,提高网架结构的健康评估难度。通过研究数据的相关性,... 结构施工监测系统是保障结构施工安全的重要手段,然而在施工监测期间时常由于现场临时供电情况或者在施工过程中传感器突然被破坏等问题,导致数据丢失,造成结构健康监测数据不完整,提高网架结构的健康评估难度。通过研究数据的相关性,提出基于长短期记忆神经网络(LSTM)的结构响应修复方法,使用网架提升过程的数据验证该方法的有效性和鲁棒性,并分析不同的数据损失程度对数据修复精度的影响。结果表明,提出的两种LSTM缺失数据修复方法均能够准确拟合出结构的数据缺失段的应变变化规律,且预测出的应变值与实测值接近,其中多测点空间相关的LSTM数据修复方法的准确率高于单测点自相关的LSTM数据修复方法。经试验验证,多测点空间相关的LSTM数据修复方法在数据缺失率在20%以内时,RMSE指标为7,MAPE指标低于6%。 展开更多
关键词 施工监测 数据修复 长短期记忆神经网络 大跨钢结构
在线阅读 下载PDF
无锁并发布谷鸟过滤器
20
作者 王瀚橙 陈志鹏 +3 位作者 戴海鹏 顾荣 KIM Chaewon 陈贵海 《软件学报》 北大核心 2025年第7期3339-3357,共19页
布谷鸟过滤器是一种高效的概率型数据结构,该数据结构可以快速判断某个元素是否存在于给定集合中,被广泛应用于计算机网络、物联网应用以及数据库系统中.在实践中,上述系统通常需要处理海量数据以及大量并发请求.实现支持高并发的布谷... 布谷鸟过滤器是一种高效的概率型数据结构,该数据结构可以快速判断某个元素是否存在于给定集合中,被广泛应用于计算机网络、物联网应用以及数据库系统中.在实践中,上述系统通常需要处理海量数据以及大量并发请求.实现支持高并发的布谷鸟过滤器可以显著提升系统吞吐以及数据处理能力,对提升系统性能至关重要.为此,设计一个支持无锁并发的布谷鸟过滤器.该过滤器通过所提出的两阶段查询、路径探查与元素迁移分离,以及基于多机器字比较并交换的原子迁移技术实现高性能的查询、插入和删除操作.理论分析和实验验证结果均表明,无锁并发布谷鸟过滤器显著提升现有最先进算法的并发性能.无锁并发布谷鸟过滤器的查询吞吐量,平均为使用细粒度锁的布谷鸟过滤器的查询吞吐量的1.94倍. 展开更多
关键词 布谷鸟过滤器 并发 近似成员资格查询 概率数据结构 计算机网络
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部