In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallograph...In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallographic structures (HCP, FCC, BCC and SC) using the Modified Embedded Atom Method (MEAM) and the MEAM potential of titanium. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of titanium, which is the hexagonal compact structure (HCP) with crystal parameters a = 2.952 Å and c = 4.821 Å and a cohesion energy of -4.87 eV. This structure is seconded by the cubic centred structure (BCC) with a lattice parameter a = 3.274 Å and a cohesive energy of -4.84 eV. It was shown that titanium can crystallise into a third structure which is the face-centred cubic (FCC) structure with a lattice parameter a = 4.143 Å and a cohesive energy of -4.82 eV. The results obtained in this study were compared with the theoretical results and showed considerable agreement.展开更多
针对普遍单脉冲位置调制的不足,在已有的UWB(Ultra-Wideband)脉冲位置调制研究基础上,提出了一种改进的双极性多脉冲位置调制(AMPPM:Ambipolar Multi-Pulse Position Modulation)的UWB跳时调制方案,并对其加性高斯白噪声(AWGN:Additive ...针对普遍单脉冲位置调制的不足,在已有的UWB(Ultra-Wideband)脉冲位置调制研究基础上,提出了一种改进的双极性多脉冲位置调制(AMPPM:Ambipolar Multi-Pulse Position Modulation)的UWB跳时调制方案,并对其加性高斯白噪声(AWGN:Additive white Gaussian Noise)下的信道容量,最大可靠通信距离等性能指标进行了理论分析。理论分析及实验数值结果表明,在相同的条件下,与普通的单脉冲位置调制(PPM:Pulse Position Modulation)相比,AMPPM能获得较高的容量,即在给定可实现脉冲宽度下可获得更高的通信速率。仿真结果表明,当脉冲宽度为0.5 ns时,L进制AMPPM可达到333 Mbit/s的速率,而同等条件下的L进制PPM仅能达到167 Mbit/s的速率。同时AMPPM在最大可靠通信距离指标方面也较相应的PPM及脉冲幅度调制(PAM:Pulse Amplitude Modulation)有改善,在100 Mbit/s及10-4的误码率下可达到8 m的通信距离。展开更多
文摘In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallographic structures (HCP, FCC, BCC and SC) using the Modified Embedded Atom Method (MEAM) and the MEAM potential of titanium. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of titanium, which is the hexagonal compact structure (HCP) with crystal parameters a = 2.952 Å and c = 4.821 Å and a cohesion energy of -4.87 eV. This structure is seconded by the cubic centred structure (BCC) with a lattice parameter a = 3.274 Å and a cohesive energy of -4.84 eV. It was shown that titanium can crystallise into a third structure which is the face-centred cubic (FCC) structure with a lattice parameter a = 4.143 Å and a cohesive energy of -4.82 eV. The results obtained in this study were compared with the theoretical results and showed considerable agreement.