Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the ...Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the etiology remains unknown for a majority of affected men. Here, we identified a homozygous missense mutation and a compound heterozygous mutation of CCIN in patients suffering from teratozoospermia. CCIN encodes the cytoskeletal protein Calicin that is involved in the formation and maintenance of the highly regular organization of the calyx of mammalian spermatozoa, and has been proposed to play a role in sperm head structure remodeling during the process of spermiogenesis. Our morphological and ultrastructural analyses of the spermatozoa obtained from all three men harboring deleterious CCIN mutants reveal severe head malformation. Further immunofluorescence assays unveil markedly reduced levels of Calicin in spermatozoa. These patient phenotypes are successfully recapitulated in mouse models expressing the disease-associated variants, confirming the role of Calicin in male fertility.Notably, all mutant spermatozoa from mice and human patients fail to adhere to the zona mass, which likely is the major mechanistic reason for CCIN-mutant sperm-derived infertility. Finally, the use of intracytoplasmic sperm injections(ICSI) successfully makes mutated mice and two couples with CCIN variants have healthy offspring. Taken together, our findings identify the role of Calicin in sperm head shaping and male fertility, providing important guidance for genetic counseling and assisted reproduction treatments.展开更多
Nano-carbon and iron composite—carbon-coated iron nanoparticles (CCINs) produced by carbon arc method can be used as a new kind of magnetic targeting induction heating drug carrier for cancer therapy. The structure a...Nano-carbon and iron composite—carbon-coated iron nanoparticles (CCINs) produced by carbon arc method can be used as a new kind of magnetic targeting induction heating drug carrier for cancer therapy. The structure and morphology of CCINs are studied by X-ray diffraction (XRD) and transmission electron microscope (TEM). Mossbauer spectra of these nanoparticles show that they contain only iron and carbon, without ferric carbide and ferric oxide. CCINs can be used as the magnetic drug carrier, with the effect of targeting magnetic induction heating in its inner core and higher drug adsorption in its nano-carbon shell outside because of its high specific surface area. CCINs can absorb Epirubicin (EPI) of 160 μg/mg measured by an optical spectrometer. In acute toxicity experiment with mice, the median lethal dose (LD50) of EPI is 16.9 mg/kg, while that of EPI-CCINs mixture is 20.7 mg/kg and none of the mice died after pure CCINs medication. The results show that pure CCINs belong to non-toxic grade and EPI delivery in mixture with CCINs can reduce its acute toxicity in mice. The magnetic properties of CCINs and their magnetic induction heating are investigated. The iron nanoparticle in its inner core has better magnetism with a good effect on targeting magnetic induction heating. When the CCINs are mixed with physiological salt water and are injected uniformly in pig’s liver, the temperature goes up to 48°C. While in the case that CCINs are filled in a certain section of pig’s liver, the temperature goes up to 52°C. In both cases the temperature is high enough to kill the cancer cell. CCINs have potential applications in cancer therapy.展开更多
基金supported by the National Natural Science Foundation of China(31930063,81771533,81901531,31971137,and 81871163)the National Key Research and Development Program of China(2018YFC2000102,2018YFA0107004,and 2018YFC1003000)+2 种基金the Shanghai Municipal Health Commission and Collaborative Innovation Cluster Project(2019CXJQ01)SHIPM-pi Fund(JY201801)SHIPM-mu Fund(JC201802)。
文摘Teratozoospermia is usually associated with defective spermiogenesis and is a disorder with considerable genetic heterogeneity. Although previous studies have identified several teratozoospermia-associated genes, the etiology remains unknown for a majority of affected men. Here, we identified a homozygous missense mutation and a compound heterozygous mutation of CCIN in patients suffering from teratozoospermia. CCIN encodes the cytoskeletal protein Calicin that is involved in the formation and maintenance of the highly regular organization of the calyx of mammalian spermatozoa, and has been proposed to play a role in sperm head structure remodeling during the process of spermiogenesis. Our morphological and ultrastructural analyses of the spermatozoa obtained from all three men harboring deleterious CCIN mutants reveal severe head malformation. Further immunofluorescence assays unveil markedly reduced levels of Calicin in spermatozoa. These patient phenotypes are successfully recapitulated in mouse models expressing the disease-associated variants, confirming the role of Calicin in male fertility.Notably, all mutant spermatozoa from mice and human patients fail to adhere to the zona mass, which likely is the major mechanistic reason for CCIN-mutant sperm-derived infertility. Finally, the use of intracytoplasmic sperm injections(ICSI) successfully makes mutated mice and two couples with CCIN variants have healthy offspring. Taken together, our findings identify the role of Calicin in sperm head shaping and male fertility, providing important guidance for genetic counseling and assisted reproduction treatments.
基金Supported by the National Natural Science Foundation of China (Grant No. 50372013)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050562002)the Guangdong Provincial Natural Science Foundation of China (Grant No. 07001769)
文摘Nano-carbon and iron composite—carbon-coated iron nanoparticles (CCINs) produced by carbon arc method can be used as a new kind of magnetic targeting induction heating drug carrier for cancer therapy. The structure and morphology of CCINs are studied by X-ray diffraction (XRD) and transmission electron microscope (TEM). Mossbauer spectra of these nanoparticles show that they contain only iron and carbon, without ferric carbide and ferric oxide. CCINs can be used as the magnetic drug carrier, with the effect of targeting magnetic induction heating in its inner core and higher drug adsorption in its nano-carbon shell outside because of its high specific surface area. CCINs can absorb Epirubicin (EPI) of 160 μg/mg measured by an optical spectrometer. In acute toxicity experiment with mice, the median lethal dose (LD50) of EPI is 16.9 mg/kg, while that of EPI-CCINs mixture is 20.7 mg/kg and none of the mice died after pure CCINs medication. The results show that pure CCINs belong to non-toxic grade and EPI delivery in mixture with CCINs can reduce its acute toxicity in mice. The magnetic properties of CCINs and their magnetic induction heating are investigated. The iron nanoparticle in its inner core has better magnetism with a good effect on targeting magnetic induction heating. When the CCINs are mixed with physiological salt water and are injected uniformly in pig’s liver, the temperature goes up to 48°C. While in the case that CCINs are filled in a certain section of pig’s liver, the temperature goes up to 52°C. In both cases the temperature is high enough to kill the cancer cell. CCINs have potential applications in cancer therapy.