Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu...Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
Imaging evaluation of lymph node metastasis and infiltration faces problems such as low artificial outline efficiency and insufficient consistency.Deep learning technology based on convolutional neural networks has gr...Imaging evaluation of lymph node metastasis and infiltration faces problems such as low artificial outline efficiency and insufficient consistency.Deep learning technology based on convolutional neural networks has greatly improved the technical effect of radiomics in lymph node pathological characteristics analysis and efficacy monitoring through automatic lymph node detection,precise segmentation and three-dimensional reconstruction algorithms.This review focuses on the automatic lymph node segmentation model,treatment response prediction algorithm and benign and malignant differential diagnosis system for multimodal imaging,in order to provide a basis for further research on artificial intelligence to assist lymph node disease management and clinical decision-making,and provide a reference for promoting the construction of a system for accurate diagnosis,personalized treatment and prognostic evaluation of lymph node-related diseases.展开更多
Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high va...Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process.In this study,the authors introduce a framework named MultiJSQ,comprising the feature presentation network(FRN)and the indicator prediction network(IEN),which is designed for simultaneous joint segmentation and quantification.The FRN is tailored for representing global image features,facilitating the direct acquisition of left ventricle(LV)contour images through pixel classification.Additionally,the IEN incorporates specifically designed modules to extract relevant clinical indices.The authors’method considers the interdependence of different tasks,demonstrating the validity of these relationships and yielding favourable results.Through extensive experiments on cardiac MR images from 145 patients,MultiJSQ achieves impressive outcomes,with low mean absolute errors of 124 mm^(2),1.72 mm,and 1.21 mm for areas,dimensions,and regional wall thicknesses,respectively,along with a Dice metric score of 0.908.The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification,highlighting its promising clinical application prospects.展开更多
In the management of land resources and the protection of cultivated land,the law enforcement of land satellite images is often used as one of the main means.In recent years,the policies and regulations of the law enf...In the management of land resources and the protection of cultivated land,the law enforcement of land satellite images is often used as one of the main means.In recent years,the policies and regulations of the law enforcement of land satellite images have become more and more strict and been adjusted increasingly frequently,playing a decisive role in preventing excessive non-agricultural and non-food urbanization.In the process of the law enforcement,the extraction of suspected illegal buildings is the most important and time-consuming content.Compared with the traditional deep learning model,fully convolutional networks(FCN)has a great advantage in remote sensing image processing because its input images are not limited by size,and both convolution and deconvolution are independent of the overall size of images.In this paper,an intelligent extraction model of suspected illegal buildings from land satellite images based on deep learning FCN was built.Kaiyuan City,Yunnan Province was taken as an example.The verification results show that the global accuracy of this model was 86.6%in the process of building extraction,and mean intersection over union(mIoU)was 73.6%.This study can provide reference for the extraction of suspected illegal buildings in the law enforcement work of land satellite images,and reduce the tedious manual operation to a certain extent.展开更多
Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature ma...Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature map resolution,but also to mitigate the loss of feature information incurred during the encoding phase.However,this approach gives rise to a challenge:multiple up-sampling operations in the decoder segment result in the loss of feature information.To address this challenge,we propose a novel network that removes the decoding structure to reduce feature information loss(CBL-Net).In particular,we introduce a Parallel Pooling Module(PPM)to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage.Furthermore,we incorporate a Multiplexed Dilation Convolution(MDC)module to expand the network's receptive field.Also,although we have removed the decoding stage,we still need to recover the feature map resolution.Therefore,we introduced the Global Feature Recovery(GFR)module.It uses attention mechanism for the image feature map resolution recovery,which can effectively reduce the loss of feature information.We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets:DRIVE,CHASEDB and MoNuSeg datasets.Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation.In addition,it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.展开更多
Image semantic segmentation is an essential technique for studying human behavior through image data.This paper proposes an image semantic segmentation method for human behavior research.Firstly,an end-to-end convolut...Image semantic segmentation is an essential technique for studying human behavior through image data.This paper proposes an image semantic segmentation method for human behavior research.Firstly,an end-to-end convolutional neural network architecture is proposed,which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network;then jump-connected convolution is used to classify each pixel in the image,and an image semantic segmentation method based on convolu-tional neural network is proposed;and then a conditional random field network is used to improve the effect of image segmentation of hu-man behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field im-age is proposed.Finally,using the proposed image segmentation network,the input entrepreneurial image data is semantically segmented to obtain the contour features of the person;and the segmentation of the images in the medical field.The experimental results show that the image semantic segmentation method is effective.It is a new way to use image data to study human behavior and can be extended to other research areas.展开更多
Liver tumors segmentation from computed tomography (CT) images is an essential task for diagnosis and treatments of liver cancer. However, it is difficult owing to the variability of appearances, fuzzy boundaries, het...Liver tumors segmentation from computed tomography (CT) images is an essential task for diagnosis and treatments of liver cancer. However, it is difficult owing to the variability of appearances, fuzzy boundaries, heterogeneous densities, shapes and sizes of lesions. In this paper, an automatic method based on convolutional neural networks (CNNs) is presented to segment lesions from CT images. The CNNs is one of deep learning models with some convolutional filters which can learn hierarchical features from data. We compared the CNNs model to popular machine learning algorithms: AdaBoost, Random Forests (RF), and support vector machine (SVM). These classifiers were trained by handcrafted features containing mean, variance, and contextual features. Experimental evaluation was performed on 30 portal phase enhanced CT images using leave-one-out cross validation. The average Dice Similarity Coefficient (DSC), precision, and recall achieved of 80.06% ± 1.63%, 82.67% ± 1.43%, and 84.34% ± 1.61%, respectively. The results show that the CNNs method has better performance than other methods and is promising in liver tumor segmentation.展开更多
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment...AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.展开更多
This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed int...This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy.展开更多
This paper focuses on the image segmentation with probabilistic neural networks(PNNs).Back propagation neural networks(BpNNs)and multi perceptron neural networks(MLPs)are also considered in this study.Especially,this ...This paper focuses on the image segmentation with probabilistic neural networks(PNNs).Back propagation neural networks(BpNNs)and multi perceptron neural networks(MLPs)are also considered in this study.Especially,this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN.The comparison between image segmentations with PNNs and with other neural networks is given.The experimental results show that PNNs can be successfully applied to image segmentation for good results.展开更多
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of...Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.展开更多
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ...An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.展开更多
In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intel...In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results.To address this challenge,we design a Dual-Branch-UNet framework,which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation.To be more explicit,we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net.Then,image features are combined at each layer to produce richer semantic data and the model’s capacity is adjusted to various input images.Meanwhile,in the lower sampling section,we give up pooling and conduct the lower sampling by convolution operation to control step size for information fusion.We also employ an attentionmodule in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation.The proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods.展开更多
In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectiv...In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectively improve the accuracy of the subsequent material feature extraction process,which is of great significance to the study of material performance.This study focuses on the low accuracy problem of image segmentation caused by fiber cross-section adhesion in composite CT images.In the core layer area,area validity is evaluated by morphological indicator and an iterative segmentation strategy is proposed based on the watershed algorithm.In the transition layer area,a U-net neural network model trained by using artificial labels is applied to the prediction of segmentation result.Furthermore,a CT image segmentation method for fiber composite materials based on the improved watershed algorithm and the U-net model is proposed.It is verified by experiments that the method has good adaptability and effectiveness to the CT image segmentation problem of composite materials,and the accuracy of segmentation is significantly improved in comparison with the original method,which ensures the accuracy and robustness of the subsequent fiber feature extraction process.展开更多
Image technology is applied more and more to help doctors to improve the accuracy of tumor diagnosis as well as researchers to study tumor characteristics. Image segmentation technology is an important part of image t...Image technology is applied more and more to help doctors to improve the accuracy of tumor diagnosis as well as researchers to study tumor characteristics. Image segmentation technology is an important part of image treatment. This paper summarizes the advances of image segmentation by using artificial neural network including mainly the BP network and convolutional neural network (CNN). Many CNN models with different structures have been built and successfully used in segmentation of tumor images such as supervised and unsupervised learning CNN. It is shown that the application of artificial network can improve the efficiency and accuracy of segmentation of tumor image. However, some deficiencies of image segmentation by using artificial neural network still exist. For example, new methods should be found to reduce the cost of building the marked data set. New artificial networks with higher efficiency should be built.展开更多
This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks w...This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks which learn knowledge from the examples, to obtain the well performed fuzzy rules. Furthermore this fuzzy inference system is completed by neural network structure which can work in parallel. The segmentation process consists of pre-segmentation based on region growing algorithm and region merging based on FNNHS. The experimental results on the complicated image manifest the utility of this method.展开更多
Clustering algorithms in feature space are important methods in image segmentation. The choice of the effective feature parameters and the construction of the clustering method are key problems encountered with cluste...Clustering algorithms in feature space are important methods in image segmentation. The choice of the effective feature parameters and the construction of the clustering method are key problems encountered with clustering algorithms. In this paper, the multifractal dimensions are chosen as the segmentation feature parameters which are extracted from original image and wavelet-transformed image. SOM (Self-Organizing Map) network is applied to cluster the segmentation feature parameters. The experiment shows that the performance of the presented algorithm is very good.展开更多
This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With ...This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With the character vectors including normal and range value, self-organization map is introduced to cluster. The normal analysis is used to eliminate over-segmentation and the last result is gotten. This method avoid selecting original seeds and uses fewer samples, moreover computes rapidly. The experiment shows the better performance.展开更多
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFE0206900China Postdoctoral Science Foundation,Grant/Award Number:2023M731204+2 种基金The Open Project of Key Laboratory for Quality Evaluation of Ultrasound Surgical Equipment of National Medical Products Administration,Grant/Award Number:SMDTKL-2023-1-01The Hubei Province Key Research and Development Project,Grant/Award Number:2023BCB007CAAI-Huawei MindSpore Open Fund。
文摘Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
基金Supported by Clinical Trials from the Nanjing Drum Tower Hospital,Affiliated Hospital of Medical School,Nanjing University,No.2021-LCYJ-MS-11Nanjing Drum Tower Hospital National Natural Science Foundation Youth Cultivation Project,No.2024-JCYJQP-15.
文摘Imaging evaluation of lymph node metastasis and infiltration faces problems such as low artificial outline efficiency and insufficient consistency.Deep learning technology based on convolutional neural networks has greatly improved the technical effect of radiomics in lymph node pathological characteristics analysis and efficacy monitoring through automatic lymph node detection,precise segmentation and three-dimensional reconstruction algorithms.This review focuses on the automatic lymph node segmentation model,treatment response prediction algorithm and benign and malignant differential diagnosis system for multimodal imaging,in order to provide a basis for further research on artificial intelligence to assist lymph node disease management and clinical decision-making,and provide a reference for promoting the construction of a system for accurate diagnosis,personalized treatment and prognostic evaluation of lymph node-related diseases.
基金Hefei Municipal Natural Science Foundation,Grant/Award Number:2022009Suqian Guiding Program Project,Grant/Award Number:Z202309Suqian Traditional Chinese Medicine Science and Technology Plan,Grant/Award Number:MS202301。
文摘Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process.In this study,the authors introduce a framework named MultiJSQ,comprising the feature presentation network(FRN)and the indicator prediction network(IEN),which is designed for simultaneous joint segmentation and quantification.The FRN is tailored for representing global image features,facilitating the direct acquisition of left ventricle(LV)contour images through pixel classification.Additionally,the IEN incorporates specifically designed modules to extract relevant clinical indices.The authors’method considers the interdependence of different tasks,demonstrating the validity of these relationships and yielding favourable results.Through extensive experiments on cardiac MR images from 145 patients,MultiJSQ achieves impressive outcomes,with low mean absolute errors of 124 mm^(2),1.72 mm,and 1.21 mm for areas,dimensions,and regional wall thicknesses,respectively,along with a Dice metric score of 0.908.The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification,highlighting its promising clinical application prospects.
文摘In the management of land resources and the protection of cultivated land,the law enforcement of land satellite images is often used as one of the main means.In recent years,the policies and regulations of the law enforcement of land satellite images have become more and more strict and been adjusted increasingly frequently,playing a decisive role in preventing excessive non-agricultural and non-food urbanization.In the process of the law enforcement,the extraction of suspected illegal buildings is the most important and time-consuming content.Compared with the traditional deep learning model,fully convolutional networks(FCN)has a great advantage in remote sensing image processing because its input images are not limited by size,and both convolution and deconvolution are independent of the overall size of images.In this paper,an intelligent extraction model of suspected illegal buildings from land satellite images based on deep learning FCN was built.Kaiyuan City,Yunnan Province was taken as an example.The verification results show that the global accuracy of this model was 86.6%in the process of building extraction,and mean intersection over union(mIoU)was 73.6%.This study can provide reference for the extraction of suspected illegal buildings in the law enforcement work of land satellite images,and reduce the tedious manual operation to a certain extent.
基金funded by the National Key Research and Development Program of China(Grant 2020YFB1708900)the Fundamental Research Funds for the Central Universities(Grant No.B220201044).
文摘Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature map resolution,but also to mitigate the loss of feature information incurred during the encoding phase.However,this approach gives rise to a challenge:multiple up-sampling operations in the decoder segment result in the loss of feature information.To address this challenge,we propose a novel network that removes the decoding structure to reduce feature information loss(CBL-Net).In particular,we introduce a Parallel Pooling Module(PPM)to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage.Furthermore,we incorporate a Multiplexed Dilation Convolution(MDC)module to expand the network's receptive field.Also,although we have removed the decoding stage,we still need to recover the feature map resolution.Therefore,we introduced the Global Feature Recovery(GFR)module.It uses attention mechanism for the image feature map resolution recovery,which can effectively reduce the loss of feature information.We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets:DRIVE,CHASEDB and MoNuSeg datasets.Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation.In addition,it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component.
基金Supported by the Major Consulting and Research Project of the Chinese Academy of Engineering(2020-CQ-ZD-1)the National Natural Science Foundation of China(72101235)Zhejiang Soft Science Research Program(2023C35012)。
文摘Image semantic segmentation is an essential technique for studying human behavior through image data.This paper proposes an image semantic segmentation method for human behavior research.Firstly,an end-to-end convolutional neural network architecture is proposed,which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network;then jump-connected convolution is used to classify each pixel in the image,and an image semantic segmentation method based on convolu-tional neural network is proposed;and then a conditional random field network is used to improve the effect of image segmentation of hu-man behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field im-age is proposed.Finally,using the proposed image segmentation network,the input entrepreneurial image data is semantically segmented to obtain the contour features of the person;and the segmentation of the images in the medical field.The experimental results show that the image semantic segmentation method is effective.It is a new way to use image data to study human behavior and can be extended to other research areas.
文摘Liver tumors segmentation from computed tomography (CT) images is an essential task for diagnosis and treatments of liver cancer. However, it is difficult owing to the variability of appearances, fuzzy boundaries, heterogeneous densities, shapes and sizes of lesions. In this paper, an automatic method based on convolutional neural networks (CNNs) is presented to segment lesions from CT images. The CNNs is one of deep learning models with some convolutional filters which can learn hierarchical features from data. We compared the CNNs model to popular machine learning algorithms: AdaBoost, Random Forests (RF), and support vector machine (SVM). These classifiers were trained by handcrafted features containing mean, variance, and contextual features. Experimental evaluation was performed on 30 portal phase enhanced CT images using leave-one-out cross validation. The average Dice Similarity Coefficient (DSC), precision, and recall achieved of 80.06% ± 1.63%, 82.67% ± 1.43%, and 84.34% ± 1.61%, respectively. The results show that the CNNs method has better performance than other methods and is promising in liver tumor segmentation.
基金Supported by National Science Foundation of China(No.81800878)Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2017QN24)+1 种基金Key Technological Research Projects of Songjiang District(No.18sjkjgg24)Bethune Langmu Ophthalmological Research Fund for Young and Middle-aged People(No.BJ-LM2018002J)
文摘AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.
文摘This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy.
文摘This paper focuses on the image segmentation with probabilistic neural networks(PNNs).Back propagation neural networks(BpNNs)and multi perceptron neural networks(MLPs)are also considered in this study.Especially,this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN.The comparison between image segmentations with PNNs and with other neural networks is given.The experimental results show that PNNs can be successfully applied to image segmentation for good results.
基金The authors received Sichuan Science and Technology Program(No.18YYJC1917)funding for this study.
文摘Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.
基金supported by the National Natural Science Foundation of China(61073106)the Aerospace Science and Technology Innovation Fund(CASC201105)
文摘An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance.
基金supported by National Natural Science Foundation of China(NSFC)(61976123,62072213)Taishan Young Scholars Program of Shandong Provinceand Key Development Program for Basic Research of Shandong Province(ZR2020ZD44).
文摘In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results.To address this challenge,we design a Dual-Branch-UNet framework,which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation.To be more explicit,we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net.Then,image features are combined at each layer to produce richer semantic data and the model’s capacity is adjusted to various input images.Meanwhile,in the lower sampling section,we give up pooling and conduct the lower sampling by convolution operation to control step size for information fusion.We also employ an attentionmodule in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation.The proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods.
文摘In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectively improve the accuracy of the subsequent material feature extraction process,which is of great significance to the study of material performance.This study focuses on the low accuracy problem of image segmentation caused by fiber cross-section adhesion in composite CT images.In the core layer area,area validity is evaluated by morphological indicator and an iterative segmentation strategy is proposed based on the watershed algorithm.In the transition layer area,a U-net neural network model trained by using artificial labels is applied to the prediction of segmentation result.Furthermore,a CT image segmentation method for fiber composite materials based on the improved watershed algorithm and the U-net model is proposed.It is verified by experiments that the method has good adaptability and effectiveness to the CT image segmentation problem of composite materials,and the accuracy of segmentation is significantly improved in comparison with the original method,which ensures the accuracy and robustness of the subsequent fiber feature extraction process.
文摘Image technology is applied more and more to help doctors to improve the accuracy of tumor diagnosis as well as researchers to study tumor characteristics. Image segmentation technology is an important part of image treatment. This paper summarizes the advances of image segmentation by using artificial neural network including mainly the BP network and convolutional neural network (CNN). Many CNN models with different structures have been built and successfully used in segmentation of tumor images such as supervised and unsupervised learning CNN. It is shown that the application of artificial network can improve the efficiency and accuracy of segmentation of tumor image. However, some deficiencies of image segmentation by using artificial neural network still exist. For example, new methods should be found to reduce the cost of building the marked data set. New artificial networks with higher efficiency should be built.
文摘This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks which learn knowledge from the examples, to obtain the well performed fuzzy rules. Furthermore this fuzzy inference system is completed by neural network structure which can work in parallel. The segmentation process consists of pre-segmentation based on region growing algorithm and region merging based on FNNHS. The experimental results on the complicated image manifest the utility of this method.
文摘Clustering algorithms in feature space are important methods in image segmentation. The choice of the effective feature parameters and the construction of the clustering method are key problems encountered with clustering algorithms. In this paper, the multifractal dimensions are chosen as the segmentation feature parameters which are extracted from original image and wavelet-transformed image. SOM (Self-Organizing Map) network is applied to cluster the segmentation feature parameters. The experiment shows that the performance of the presented algorithm is very good.
文摘This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With the character vectors including normal and range value, self-organization map is introduced to cluster. The normal analysis is used to eliminate over-segmentation and the last result is gotten. This method avoid selecting original seeds and uses fewer samples, moreover computes rapidly. The experiment shows the better performance.