期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
1
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight Network convolutional block attention module cbam mechanism MobileViT cbam PCB Defect Detection Regression Loss Function
原文传递
MobileNet network optimization based on convolutional block attention module 被引量:3
2
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(cbam) model pruning and quantization edge machine learning
在线阅读 下载PDF
基于注意力特征融合的SqueezeNet细粒度图像分类模型 被引量:8
3
作者 李明悦 何乐生 +1 位作者 雷晨 龚友梅 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期868-876,共9页
针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级... 针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级卷积神经网络,对其微调后在公开的细粒度图像数据集上进行验证,经比较后选择了模型性能最佳的SqueezeNet作为图像的特征提取器;然后将两个具有注意力机制的卷积模块嵌入至SqueezeNet网络的每个Fire模块;接着提取出改进后的SqueezeNet的中间层特征进行双线性融合形成新的注意力特征图,与网络的全局特征再融合后分类;最后通过实验对比和可视化分析,网络嵌入Convolution Block Attention Module(CBAM)模块的分类准确率在鸟类、汽车、飞机数据集上依次提高了8.96%、4.89%和5.85%,嵌入Squeeze-and-Excitation(SE)模块的分类准确率依次提高了9.81%、4.52%和2.30%,且新模型在参数量、运行效率等方面比现有算法更具优势. 展开更多
关键词 细粒度图像分类 轻量级卷积神经网络 SqueezeNet 注意力机制 Convolution Block Attention module(cbam) Squeeze-and-Excitation(SE) 特征融合
在线阅读 下载PDF
Hybrid CBAM-EfficientNetV2 Fire Image Recognition Method with Label Smoothing in Detecting Tiny Targets
4
作者 Bo Wang Guozhong Huang +3 位作者 Haoxuan Li Xiaolong Chen Lei Zhang Xuehong Gao 《Machine Intelligence Research》 EI CSCD 2024年第6期1145-1161,共17页
Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning.Aiming at the problems of low accuracy of existing fire recognition and high error rate of... Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning.Aiming at the problems of low accuracy of existing fire recognition and high error rate of tiny target detection,this study proposed a fire recognition model based on a channel space attention mechanism.First,the convolutional block attention module(CBAM)is intro-duced into the first and last convolutional layers EfficientNetV2,which shows strong feature extraction ability and high computational efficiency as the backbone network.In terms of channel and space aspects,the weights in the feature layer are increased,which enhances the semantic information of flame smoke features and makes the model pay more attention to the feature information of fire images.Then,label smoothing based on the cross-entropy loss function is introduced into this study to avoid predicting labels too confidently in the training process to improve the generalization ability of the recognition model.The experimental results show that the fire image re-cognition accuracy based on the CBAM-EfficientNetV2 model reaches 98.9%.The accuracy of smoke image recognition can reach 98.5%.The accuracy of small target detection can reach 96.1%.At the same time,we compared the existing methods and found that the proposed method achieved higher accuracy,precision,recall,and F1-score.Finally,the fire image results are visualized using the Grad-CAM technique,which makes the model more effective and more intuitive in detecting tiny targets. 展开更多
关键词 Fire recognition tiny target detection efficientNetV2 label smoothing convolutional block attention module(cbam)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部