Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and of...Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and often conflicting requirements of the bulk electrolyte and the electrode-electrolyte interphase.Here,we present a weakly coordinating cationic polymer electrolyte(WCPE)specifically designed to regulate the Li^(+)coordination structure,thereby enabling fast-charging SSLMBs.The WCPE comprises an imidazolium-based polycationic matrix combined with a succinonitrile(SN)-based highconcentration electrolyte.Unlike conventional neutral polymer matrices,the polycationic matrix in the WCPE competes with Li^(+)for interactions with SN,weakening the original coordination between SN and Li^(+).This modulation of SN-Li^(+)interaction improves both Li^(+)conductivity of the WCPE(σ_(Li^(+))=1.29mS cm^(-1))and redox kinetics at the electrode-electrolyte interphase.Consequently,SSLMB cells(comprising LiFePO_(4)cathodes and Li-metal anodes)with the WCPE achieve fast-charging capability(reaching over 80%state of charge within 10 min),outperforming those of previously reported polymer electrolytebased SSLMBs.展开更多
The occurrence,development,and metastasis of tumors often entail abnormal expression of genetic substances.Monitoring and regulating changes in intracellular nucleic acid substances hold promise for achieving accurate...The occurrence,development,and metastasis of tumors often entail abnormal expression of genetic substances.Monitoring and regulating changes in intracellular nucleic acid substances hold promise for achieving accurate tumor diagnosis and effective treatment.However,the effectiveness of integrated tumor diagnosis and treatment based on functional nucleic acids still needs to be improved.In this study,we engineered a multifunctional nucleic acid delivery system grounded in a cationic covalent organic framework carrier.This system not only showcases effective gene silencing but also boasts high sensitivity in detecting miR21 levels within tumor cells,enabling real-time monitoring of tumor gene therapy efficacy.The construction of this integrated functional nucleic acid delivery platform provides new ideas for precise tumor detection and effective tumor treatment.展开更多
Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing unde...Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing under high-temperature lithiation result in electrochemical kinetic hysteresis and structural instability. Herein, we report a highly-ordered single-crystalline LiNi0.85Co0.05Mn0.10O2(NCM85) cathode by doping K+and F-ions. To be specific, the K-ion as a fluxing agent can remarkably decrease the solid-state lithiation temperature by ~30°C, leading to less Li/Ni mixing and oxygen vacancy. Meanwhile, the strong transitional metal(TM)-F bonds are helpful for enhancing de-/lithiation kinetics and limiting the lattice oxygen escape even at 4.5 V high-voltage. Their advantages synergistically endow the single-crystalline NCM85 cathode with a very high reversible capacity of 222.3 mAh g-1. A superior capacity retention of 91.3% is obtained after 500 times at 1 C in pouch-type full cells, and a prediction value of 75.3% is given after cycling for 5000 h. These findings are reckoned to expedite the exploitation and application of high-voltage single-crystalline Ni-rich cathodes for next-generation Li-ion batteries.展开更多
Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding pro...Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.展开更多
Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been d...Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been developed to create a cation-accelerating electric field on the surface of the cathode to achieve ultrafast Zn^(2+)diffusion kinetics.By employing electrodeposition to coat MoS_(2)on the surface of BaV_(6)O_(16)·3H_(2)O nanowires,the directional builtin electric field generated at the heterointerface acts as a cation accelerator,continuously accelerating Zn^(2+)diffusion into the active material.The optimized Zn^(2+)diffusion coefficient in CC@BaV-V_(6)O_(16)·3H_(2)@MoS_(2)(7.5×10^(8)cm^(2)s^(-1)) surpasses that of most reported V-based cathodes.Simultaneously,MoS_(2)serving as a cathodic armor extends the cycling life of the Zn-CC@BaV_(6)O_(16)·3H_(2)@MoS_(2)full batteries to over 10000 cycles.This work provides valuable insights into optimizing ion diffusion kinetics for high-performance energy storage devices.展开更多
It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence an...It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.展开更多
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ...Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.展开更多
The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we desig...The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs.展开更多
Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to...Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition.Simulation and experimental results demonstrate that these Gd^(3+)ions are preferentially adsorbed onto the zinc surface,which enables dendritefree zinc anodes by activating the microlevelling effect during electrodeposition.In addition,the Gd^(3+)additives effectively inhibit side reactions and facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+),leading to highly reversible zinc plating/stripping.Due to these improvements,the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72%over 1400 cycles.More importantly,the Zn//NH_(4)V_(4)O_(10)full cell shows a high capacity retention rate of 85.6%after 1000 cycles.This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms.展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
The treatment and disposal of radioactive waste are presently facing great challenges.Spent ion exchange resins have become a focus of attention due to their high production and serious environmental risks.In this pap...The treatment and disposal of radioactive waste are presently facing great challenges.Spent ion exchange resins have become a focus of attention due to their high production and serious environmental risks.In this paper,a simplified model of cationic exchange resin is proposed,and the degradation processes of cationic resin monomer initiated by hydroxyl radicals(·OH)are clarified by combining statistical molecular fragmentation(SMF)model and density functional theory(DFT)calculations.The prediction of active sites indicates that the S-O bonds and the C-S bond of the sulfonic group are more likely to react during the degradation.The meta-position of the sulfonic group on the benzene ring is the most active site,and the benzene ring without the sulfonic group has a certain reactivity.The C11-C14 and C17-C20 bonds,on the carbon skeleton,are the most easily broken.It is also found that dihydroxy addition and elimination reactions play a major role in the process of desulfonation,carbon skeleton cleavage and benzene ring separation.The decomposition mechanisms found through the combination of physical models and chemical calculations,provide theoretical guidance for the treatment of complex polycyclic aromatic hydrocarbons.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green a...Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green and convenient strategy for the fabrication of porous material via aqueous foam templates,which was synergistically stabilized by Codonopsis pilosula(CP)and clay minerals of attapulgite(APT).The characterization results revealed that the APT was modified by organic molecules leached from CP and anchored at the air-water interface,which improved the foam stability significantly.The novel porous material of polyacrylamide/Codonopsis pilosula/attapulgite(PAM/CP/APT)templated from the aqueous foam via a polymerization reaction had excellent adsorption capacity for the cationic dyes methyl violet(MV)and methylene blue(MB),and the adsorption capacity can reach 755.85 mg/g and557.64 mg/g,respectively.More importantly,the adsorption capacity of spent adsorbent material was still over 200 mg/g after being recycled five times through a simple carbonization process,and then it was added to the plant pot,the total biomass was increased by about86.42%.This study provided a green and sustainable pathway for the preparation,application and subsequent processing of porous materials.展开更多
Two o-carborane based tetraphenylethene(TPE)cationic cyclophanes O1.4PF_(6)and O2.4PF_(6)were syn thesized through an S_(N)2 reaction.Their structures were confirmed both possessing Z-shaped cavities in single crystal...Two o-carborane based tetraphenylethene(TPE)cationic cyclophanes O1.4PF_(6)and O2.4PF_(6)were syn thesized through an S_(N)2 reaction.Their structures were confirmed both possessing Z-shaped cavities in single crystal analysis.The optical properties of these macrocycles were systematically investigated using UV–vis spectroscopy and fluorescence techniques.It is worth noting that the introduction of a methoxy group to the TPE unit enables the synthesis of a near-infrared-emitting macrocycle O2.4PF_(6).The recogni tion behaviors of these two macrocycles towards nucleotides were investigated using various technique including fluorescence titration,UV–vis titration,and transmission electron microscopy(TEM).Interest ingly,these cyclophanes exhibited aggregation-induced emission(AIE)effects in water or under the in duction of nucleotides.展开更多
This research aims to develop a non-invasive strategy for small interfering RNA(siRNA)nasal delivery based on ionic liquids(ILs)and cationic lipid(2,3-dioleoyloxy-propyl)-trimethylammonium-chloride(DOTAP).Other than t...This research aims to develop a non-invasive strategy for small interfering RNA(siRNA)nasal delivery based on ionic liquids(ILs)and cationic lipid(2,3-dioleoyloxy-propyl)-trimethylammonium-chloride(DOTAP).Other than the classical role of penetration enhancer,ILs also acted as superior solvents to simultaneously load siRNA and DOTAP,forming siRNA-DOTAP-ILs(siRNA-DILs)formulations.During nasal mucosa penetration,DOTAP and ILs components self-assembled into cationic lipid nanocomplexes to load siRNA for enhanced in situ transfection.The siRNA-DILs demonstrated resistance against RNase,significant mucosa penetration,prolonged nasal retention,and satisfying gene-silencing efficacy at lower dosage.Meanwhile,DILs were also able to deliver KCa3.1-targeted siRNA effectively for the treatment of allergic rhinitis in rat model by nasal route.Thus,DILs have great potentials to deliver biological macromolecules across nasal mucosa by in situ dynamic self-assembly.展开更多
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na...Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated....The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated. The results show that both diaspore and aluminosilicate minerals float readily with organosilicon cationic collector TAS101 at pH values of 4 to 10. Starch has a strong depression effect for diaspore in the alkaline pH region but has little influence on the flotation of aluminosilicate minerals. It is possible to separate diaspore from aluminosilicate minerals using the organosilicon cationic collector and starch depressant. Further studies of bauxite ore flotation were also conducted, and the reverse flotation separation process was adopted. The concentrates with the mass ratio of Al2O3 to SiO2 of 9.58 and Al2O3 recovery of 83.34% are obtained from natural bauxite ore with the mass ratio of Al2O3 to SiO2 of 6.1 at pH value of 11 using the organosilicon cationic collector and starch depressant.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
The cationic guar (CG) is synthesized and the rheological behavior of aqueous solutions of CG in the presence of sodium dodecyl sulfate (SDS) is studied in detail. The steady viscosity measurements show that the z...The cationic guar (CG) is synthesized and the rheological behavior of aqueous solutions of CG in the presence of sodium dodecyl sulfate (SDS) is studied in detail. The steady viscosity measurements show that the zero shear viscosity enhancement can be almost 3 orders of magnitude as the concentration of SDS increases from 0 to 0.043%. The gel-like formation is observed as the concentration of SDS is greater than 0.016%. The oscillatory rheological measurements of CG solutions in the presence of SDS show that the crossover modulus is almost independent of the concentration of SDS whereas the apparent relaxation time increases swiftly upon increasing the concentration of SDS. The experimental results indicate that the strength rather than the number of the cross-links is greatly affected by SDS molecules. The mechanism concerning the effect of SDS upon the rheology of CG solutions can be coined by the two-stage model. Before the formation of cross-links at the critical concentration, the electrostatic interaction between SDS and cationic site of CG chains plays a key role and the SDS molecules bind to CG chains through the electrostatic interaction. After the formation of cross-links at the concentration greater than the critical concentration, the cooperative hydrophobic interaction become dominant and SDS molecules bind to the cross-links through the hydrophobic interaction. The theological behavior of aqueous solutions of CG in the presence of SDS is chiefly determined by the micelle-like cross-links between CG chains. In fact, the flow activation energy of CG solution, obtained from the temperature dependence of the apparent relaxation time, falls in the range of transferring a hydrophobic tail of SDS from the micelle to an aqueous environment.展开更多
基金supported by the Basic Science Research Program(RS-2024-00344021,RS-2023-00261543,and RS-202300257666)through the National Research Foundation of Korea(NRF),the National Research Council of Science(000)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(RS-2024-00420590,HRD Program for Industrial Innovation)The computational resources were provided by KITSI(KSC-2024-CRE-0143)。
文摘Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and often conflicting requirements of the bulk electrolyte and the electrode-electrolyte interphase.Here,we present a weakly coordinating cationic polymer electrolyte(WCPE)specifically designed to regulate the Li^(+)coordination structure,thereby enabling fast-charging SSLMBs.The WCPE comprises an imidazolium-based polycationic matrix combined with a succinonitrile(SN)-based highconcentration electrolyte.Unlike conventional neutral polymer matrices,the polycationic matrix in the WCPE competes with Li^(+)for interactions with SN,weakening the original coordination between SN and Li^(+).This modulation of SN-Li^(+)interaction improves both Li^(+)conductivity of the WCPE(σ_(Li^(+))=1.29mS cm^(-1))and redox kinetics at the electrode-electrolyte interphase.Consequently,SSLMB cells(comprising LiFePO_(4)cathodes and Li-metal anodes)with the WCPE achieve fast-charging capability(reaching over 80%state of charge within 10 min),outperforming those of previously reported polymer electrolytebased SSLMBs.
基金the National Key Research and Development Program of China(No.2021YFB3800900)National Natural Science Foundation of China(No.51925305)the talent cultivation project Funds for the Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(No.HRTP[2022]52)。
文摘The occurrence,development,and metastasis of tumors often entail abnormal expression of genetic substances.Monitoring and regulating changes in intracellular nucleic acid substances hold promise for achieving accurate tumor diagnosis and effective treatment.However,the effectiveness of integrated tumor diagnosis and treatment based on functional nucleic acids still needs to be improved.In this study,we engineered a multifunctional nucleic acid delivery system grounded in a cationic covalent organic framework carrier.This system not only showcases effective gene silencing but also boasts high sensitivity in detecting miR21 levels within tumor cells,enabling real-time monitoring of tumor gene therapy efficacy.The construction of this integrated functional nucleic acid delivery platform provides new ideas for precise tumor detection and effective tumor treatment.
基金supported by the National Natural Science Foundation of China(U22A20429 and 22308103)Shanghai Pilot Program for Basic Research(22TQ1400100-13)+2 种基金Postdoctoral Fellowship Program of CPSF(GZB20230214)China Postdoctoral Science Foundation(2023M731083)the Fundamental Research Funds for the Central Universities.
文摘Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing under high-temperature lithiation result in electrochemical kinetic hysteresis and structural instability. Herein, we report a highly-ordered single-crystalline LiNi0.85Co0.05Mn0.10O2(NCM85) cathode by doping K+and F-ions. To be specific, the K-ion as a fluxing agent can remarkably decrease the solid-state lithiation temperature by ~30°C, leading to less Li/Ni mixing and oxygen vacancy. Meanwhile, the strong transitional metal(TM)-F bonds are helpful for enhancing de-/lithiation kinetics and limiting the lattice oxygen escape even at 4.5 V high-voltage. Their advantages synergistically endow the single-crystalline NCM85 cathode with a very high reversible capacity of 222.3 mAh g-1. A superior capacity retention of 91.3% is obtained after 500 times at 1 C in pouch-type full cells, and a prediction value of 75.3% is given after cycling for 5000 h. These findings are reckoned to expedite the exploitation and application of high-voltage single-crystalline Ni-rich cathodes for next-generation Li-ion batteries.
基金financially supported by the National Natural Science Foundation of China(No.52373011)。
文摘Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.
基金National Natural Science Foundation of China (61761047 and 41876055)Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province。
文摘Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been developed to create a cation-accelerating electric field on the surface of the cathode to achieve ultrafast Zn^(2+)diffusion kinetics.By employing electrodeposition to coat MoS_(2)on the surface of BaV_(6)O_(16)·3H_(2)O nanowires,the directional builtin electric field generated at the heterointerface acts as a cation accelerator,continuously accelerating Zn^(2+)diffusion into the active material.The optimized Zn^(2+)diffusion coefficient in CC@BaV-V_(6)O_(16)·3H_(2)@MoS_(2)(7.5×10^(8)cm^(2)s^(-1)) surpasses that of most reported V-based cathodes.Simultaneously,MoS_(2)serving as a cathodic armor extends the cycling life of the Zn-CC@BaV_(6)O_(16)·3H_(2)@MoS_(2)full batteries to over 10000 cycles.This work provides valuable insights into optimizing ion diffusion kinetics for high-performance energy storage devices.
基金financially supported by the Natural Science Foundation of Jilin Province Science and Technology Department(No.20230101221JC)the National Natural Science Foundation of China(Nos.52173115,52073278,52203189)the Research Foundation for Advanced Talents of Xiamen University of Technology(Nos.5010423019,YKJ22052R)。
文摘It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials.
基金National Natural Science Foundation of China (No.52202046)Natural Science Foundation of Shaanxi Province (No.2021JQ-034)。
文摘Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.
基金financially supported by the General Research Fund(CityU 11315622 and CityU 11310123)National Natural Science Foundation(NSFC 52372229 and NSFC 52172241)+3 种基金Green Tech Fund(GTF202220105)Guangdong Basic and Applied Basic Research Foundation(2024A1515011008)City University of Hong Kong(No.9020002)the Shenzhen Research Institute of City University of Hong Kong.
文摘The development of flexible zinc-ion batteries(ZIBs)faces a threeway trade-off among the ionic conductivity,Zn^(2+)mobility,and the electrochemical stability of hydrogel electrolytes.To address this challenge,we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs.The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn^(2+)transport through an ionic repulsion mechanism,achieving simultaneously high Zn^(2+)transference number(0.79)and high ionic conductivity(28.7 mS cm−1).Additionally,the reactivity of water in the PAPTMA hydrogels is significantly inhibited,thus possessing a strong resistance to parasitic reactions.Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA.Leveraging these properties,symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm^(−2) and maintain stable operation for 1000 h with a discharge of depth of 71%.When applied in 4×4 cm2 pouch cells with MnO_(2) as the cathode material,the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles.This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity,enhanced Zn^(2+)mobility,and strong resistance to parasitic reactions,paving the way for long-lasting flexible ZIBs.
基金supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant Nos.2024ZG50,2022DQ03-03)the National Natural Science Foundation of China(Grant Nos.52372252)the Science and Technology Innovation Program of Hunan Province(Grant Nos.2024RC1022).
文摘Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition.Simulation and experimental results demonstrate that these Gd^(3+)ions are preferentially adsorbed onto the zinc surface,which enables dendritefree zinc anodes by activating the microlevelling effect during electrodeposition.In addition,the Gd^(3+)additives effectively inhibit side reactions and facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+),leading to highly reversible zinc plating/stripping.Due to these improvements,the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72%over 1400 cycles.More importantly,the Zn//NH_(4)V_(4)O_(10)full cell shows a high capacity retention rate of 85.6%after 1000 cycles.This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms.
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金supported by the National Natural Science Foundation of China (No.22176067).
文摘The treatment and disposal of radioactive waste are presently facing great challenges.Spent ion exchange resins have become a focus of attention due to their high production and serious environmental risks.In this paper,a simplified model of cationic exchange resin is proposed,and the degradation processes of cationic resin monomer initiated by hydroxyl radicals(·OH)are clarified by combining statistical molecular fragmentation(SMF)model and density functional theory(DFT)calculations.The prediction of active sites indicates that the S-O bonds and the C-S bond of the sulfonic group are more likely to react during the degradation.The meta-position of the sulfonic group on the benzene ring is the most active site,and the benzene ring without the sulfonic group has a certain reactivity.The C11-C14 and C17-C20 bonds,on the carbon skeleton,are the most easily broken.It is also found that dihydroxy addition and elimination reactions play a major role in the process of desulfonation,carbon skeleton cleavage and benzene ring separation.The decomposition mechanisms found through the combination of physical models and chemical calculations,provide theoretical guidance for the treatment of complex polycyclic aromatic hydrocarbons.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金supported by the Major Special Projects of Gansu,China (No.21ZD2JA002)the Natural Science Foundation of Gansu,China (Nos.20JR5RA564 and 20JR5RA562)。
文摘Porous materials applied in environmental remediation have received researchers'extensive attention recently,but the related green and convenient preparation method is rarely reported.Here,we recommended a green and convenient strategy for the fabrication of porous material via aqueous foam templates,which was synergistically stabilized by Codonopsis pilosula(CP)and clay minerals of attapulgite(APT).The characterization results revealed that the APT was modified by organic molecules leached from CP and anchored at the air-water interface,which improved the foam stability significantly.The novel porous material of polyacrylamide/Codonopsis pilosula/attapulgite(PAM/CP/APT)templated from the aqueous foam via a polymerization reaction had excellent adsorption capacity for the cationic dyes methyl violet(MV)and methylene blue(MB),and the adsorption capacity can reach 755.85 mg/g and557.64 mg/g,respectively.More importantly,the adsorption capacity of spent adsorbent material was still over 200 mg/g after being recycled five times through a simple carbonization process,and then it was added to the plant pot,the total biomass was increased by about86.42%.This study provided a green and sustainable pathway for the preparation,application and subsequent processing of porous materials.
基金supported by the National Natural Science Foundation of China(No.22071025)the Joint Independent Innovation Fund of Tianjin University and Fuzhou University(No.TF2021-3)the Young and Middle-aged Teacher Education Research Project of Fujian Province(No.JAT210020)。
文摘Two o-carborane based tetraphenylethene(TPE)cationic cyclophanes O1.4PF_(6)and O2.4PF_(6)were syn thesized through an S_(N)2 reaction.Their structures were confirmed both possessing Z-shaped cavities in single crystal analysis.The optical properties of these macrocycles were systematically investigated using UV–vis spectroscopy and fluorescence techniques.It is worth noting that the introduction of a methoxy group to the TPE unit enables the synthesis of a near-infrared-emitting macrocycle O2.4PF_(6).The recogni tion behaviors of these two macrocycles towards nucleotides were investigated using various technique including fluorescence titration,UV–vis titration,and transmission electron microscopy(TEM).Interest ingly,these cyclophanes exhibited aggregation-induced emission(AIE)effects in water or under the in duction of nucleotides.
基金supported by National Natural Science Foundation of China(No.82073801)。
文摘This research aims to develop a non-invasive strategy for small interfering RNA(siRNA)nasal delivery based on ionic liquids(ILs)and cationic lipid(2,3-dioleoyloxy-propyl)-trimethylammonium-chloride(DOTAP).Other than the classical role of penetration enhancer,ILs also acted as superior solvents to simultaneously load siRNA and DOTAP,forming siRNA-DOTAP-ILs(siRNA-DILs)formulations.During nasal mucosa penetration,DOTAP and ILs components self-assembled into cationic lipid nanocomplexes to load siRNA for enhanced in situ transfection.The siRNA-DILs demonstrated resistance against RNase,significant mucosa penetration,prolonged nasal retention,and satisfying gene-silencing efficacy at lower dosage.Meanwhile,DILs were also able to deliver KCa3.1-targeted siRNA effectively for the treatment of allergic rhinitis in rat model by nasal route.Thus,DILs have great potentials to deliver biological macromolecules across nasal mucosa by in situ dynamic self-assembly.
基金funding supports from the National Key R&D Program of China(Grant Nos.2022YFB2404400 and 2019YFA0308500)Beijing Natural Science Foundation(Z190010)National Natural Science Foundation of China(Grant Nos.51991344,52025025,52072400,and 52002394)。
文摘Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
基金Project(51304085)supported by the National Natural Science Foundation of ChinaProject(GJJ12363)supported by the Education Department of Jiangxi Province,ChinaProject(20142BAB216021)supported by the Natural Science Foundation of Jiangxi Province,China
文摘The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated. The results show that both diaspore and aluminosilicate minerals float readily with organosilicon cationic collector TAS101 at pH values of 4 to 10. Starch has a strong depression effect for diaspore in the alkaline pH region but has little influence on the flotation of aluminosilicate minerals. It is possible to separate diaspore from aluminosilicate minerals using the organosilicon cationic collector and starch depressant. Further studies of bauxite ore flotation were also conducted, and the reverse flotation separation process was adopted. The concentrates with the mass ratio of Al2O3 to SiO2 of 9.58 and Al2O3 recovery of 83.34% are obtained from natural bauxite ore with the mass ratio of Al2O3 to SiO2 of 6.1 at pH value of 11 using the organosilicon cationic collector and starch depressant.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
文摘The cationic guar (CG) is synthesized and the rheological behavior of aqueous solutions of CG in the presence of sodium dodecyl sulfate (SDS) is studied in detail. The steady viscosity measurements show that the zero shear viscosity enhancement can be almost 3 orders of magnitude as the concentration of SDS increases from 0 to 0.043%. The gel-like formation is observed as the concentration of SDS is greater than 0.016%. The oscillatory rheological measurements of CG solutions in the presence of SDS show that the crossover modulus is almost independent of the concentration of SDS whereas the apparent relaxation time increases swiftly upon increasing the concentration of SDS. The experimental results indicate that the strength rather than the number of the cross-links is greatly affected by SDS molecules. The mechanism concerning the effect of SDS upon the rheology of CG solutions can be coined by the two-stage model. Before the formation of cross-links at the critical concentration, the electrostatic interaction between SDS and cationic site of CG chains plays a key role and the SDS molecules bind to CG chains through the electrostatic interaction. After the formation of cross-links at the concentration greater than the critical concentration, the cooperative hydrophobic interaction become dominant and SDS molecules bind to the cross-links through the hydrophobic interaction. The theological behavior of aqueous solutions of CG in the presence of SDS is chiefly determined by the micelle-like cross-links between CG chains. In fact, the flow activation energy of CG solution, obtained from the temperature dependence of the apparent relaxation time, falls in the range of transferring a hydrophobic tail of SDS from the micelle to an aqueous environment.